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Introduction

cdl_convert converts between common ASC CDL [http://en.wikipedia.org/wiki/ASC_CDL] formats. The American Society of
Cinematographers [http://www.theasc.com/] Color Decision List (ASC CDL, or CDL for short) is a
schema to simplify the process of interchanging color data between
various programs and facilities.

The ASC has defined schemas for including the 10 basic numbers in 5
different formats:


	Avid Log Exchange (ALE)

	Film Log EDL Exchange (FLEx)

	CMX EDL

	XML Color Correction (cc)

	XML Color Correction Collection (ccc)

	XML Color Decision List (cdl)



Unofficial Formats:


	OCIOCDLTransform, a Foundry Nuke [http://www.thefoundry.co.uk/nuke/] node

	Space separated CDL, a Rhythm & Hues internal cdl format



It is the purpose of cdl_convert to convert ASC CDL information between
these basic formats to further facilitate the ease of exchange of color
data within the Film and TV industries.

cdl_convert supports parsing ALE, FLEx, CC, CCC, CDL and RCDL. We can write
out CC, CCC, CDL and RCDL.

cdl_convert is not associated with the American Society of
Cinematographers




Changelog

New in version 0.9.2:


	Fixed a bug where ALE’s with blank lines would not convert correctly.

	Fixed a bug that was preventing cdl_convert from being correctly installed in Python 2.6

	Fixed continuous integration testing.

	No longer officially supporting Python 3.2, as I’ve had to remove it from our CI builds. It should still work just fine though, but we won’t be running CI against it.



New in version 0.9:


	Added ability to parse CMX EDLs

	Fixed a script bug where a collection format containing color decisions will not have those color decisions exported as individual color corrections.

	Fixed a bug where we weren’t reading line endings correctly in certain situations.

	Added a cdl_convert.py stub file to the package root level, which will allow running of the cdl_convert script without installation. Due to relative imports in the python code, it was no longer possible to call cdl_convert/cdl_convert.py directly.

	The script, when run directly from cdl_convert.py, will now write errors to stderror correctly, and exit with a status of 1.



New in version 0.8:


	Added –single flag. When provided with an output collection format, each color correction in the input will be exported to it’s own collection.

	Giving a ColorCorrection a non-duplicate ID now works unless the --halt flag is given. This means that incoming collections that contain duplicate IDs will not fail out.



New in version 0.7.1:


	Fixed bug where ALE’s without ‘Scan Filename’ fields could not parse correctly.



New in version 0.7:

The biggest change in 0.7 is the addition of collection format support.
.ccc, Color Correction Collections, can now be parsed and written. .cdl,
Color Decision Lists, can now be parsed and written. .ale
and .flex files now return a collection.


	
	New script flags:

	
	Adds --check flag to script, which checks all parsed ColorCorrects for sane values, and prints warnings to shell

	Adds -d, --destination flag to the script, which allows user to specify the output directory converted files will be written to.

	Adds --no-ouput flag to the script, which goes through the entire conversion process but doesn’t actually write anything to disk. Useful for troubleshooting, especially when combined with --check

	Adds --halt flag to the script, which halts on errors that can be resolved safely (such as negative slope or power values)









	Renames ColorCollectionBase to ColorCollection , since it will be used directly by both ccc and cdl.



	Adds parse_ccc which returns a ColorCollection .



	Adds write_ccc which writes a ColorCollection as a ccc file.



	Adds parse_cdl which returns a ColorCollection .



	Adds write_cdl which returns a ColorCollection as a cdl file.



	ColorCollection is now a fully functional container class, with many attributes and methods.



	Added ColorDecision , which stores either a ColorCorrection or ColorCorrectionRef , and an optional MediaRef



	Added ColorCorrectionRef , which stores a reference to a ColorCorrection



	Added parent attribute to ColorCorrection .



	Calling sop_node or sat_node on a ColorCorrection before attempting to set a SOP or Sat power now works.



	ColorCorrection cdl_file init argument renamed to input_file, which is now optional and able to be set after init.



	parse_cc and parse_rnh_cdl now only yield a single ColorCorrection , not a single member list.



	Added dev-requirements.txt (contains mock)



	All determine_dest methods now take a second directory argument, which determines the output directory.



	Adds sanity_check function which prints values which might be unusual to stdout.



	parse_cdl and write_cdl renamed to parse_rnh_cdl and write_rnh_cdl respectively.



	
	member_reset methods:

	
	ColorCorrection now has a reset_members method, which resets the class level member’s dictionary.

	MediaRef also has a reset_members method, as does ColorCollection

	reset_all function calls all of the above reset_members methods at once.









	
	Renamed cdl_file argument:

	
	parse_cc cdl_file arg renamed to input_file and now accepts a either a raw string or an ElementTree Element as input_file.

	parse_rnh_cdl cdl_file arg renamed to input_file.

	parse_ale edl_file arg renamed to input_file.

	parse_flex edl_file arg renamed to input_file.









	
	Python Structure Refactoring

	
	Moved HALT_ON_ERROR into the config module, which should now be referenced and set by importing the entire config module, and referencing or setting config.HALT_ON_ERROR

	Script functionality remains in cdl_convert.cdl_convert, but everything else has been moved out.

	AscColorSpaceBase , AscDescBase , AscXMLBase and ColorNodeBase now live under cdl_convert.base

	ColorCollection now lives in cdl_convert.collection

	ColorCorrection , SatNode and SopNode now live under cdl_convert.correction

	ColorDecision , ColorCorrectionRef and MediaRef now live under cdl_convert.decision

	All parse functions now live under cdl_convert.parse

	All write functions now live under cdl_convert.write

	sanity_check now live under cdl_convert.utils

	reset_all now lives under the main module
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Script Usage

Most likely you’ll use cdl_convert as a script, instead of a python package
itself. Indeed, even the name is formatted more like a script (with an
underscore) than the more common all lowercase of python modules.

If you just want to convert to a .cc XML file, the only required argument
is an input file, like so:

$ cdl_convert ./di_v001.flex





You can override the default .cc output, or provide multiple outputs with
the -o flag.

$ cdl_convert ./di_v001.flex -o cc,cdl





Sometimes it might be necessary to disable cdl_convert’s auto-detection of the
input file format. This can be done with the -i flag.

$ cdl_convert ./ca102_x34.cdl -i rcdl






Note

You should not normally need to do this, but it is possible especially since
there are multiple formats sharing the same file extension. In this case,
.cdl could have indicated either a space separated cdl (an rcdl),
or an XML cdl. cdl_convert does it’s best to try and guess which one
the file is, but if you’re running into trouble, it might help to indicate
to cdl_convert what the input file type is.



By default, converted files will be written to the ‘./converted’ directory, but
a custom destination directory can easily be specified with the -d flag.

$ cdl_convert ./hk416_210.ccc -d /hello_kitty/luts/cdls/






Warning

It’s possible to pass a ‘.’ to the -d flag, causing converted files to
be written to the same directory as the directory you’re calling cdl_convert
from, and often that ends up being the same directory as the file you’re
converting from. If one isn’t careful, there’s a possibility you could
overwrite the original files.



When converting large batches of color corrections, it can be helpful to know
if there’s anything odd about any of them. Using the --check flag will
cause any potentially invalid numbers to be flagged and printed to the shell.

For Slope, Power and Saturation, any values below 0.1 or above 3.0 will
flag. For Offset, any values below -1.0 or above 1.0 will flag.

$ cdl_convert ./di_v001.flex
The ColorCorrection "a347.x700" was given a Slope value of "0.978", which
might be incorrect.
The ColorCorrection "a400.x050" was given a Saturation value of "3.1",
which might be incorrect.





This is especially useful when combined with the --no-output flag, which
will enable a dry run mode and allow you to spot odd values before running.

Full help is available using the standard --help command:

$ cdl_convert --help
usage: cdl_convert [-h] [-i INPUT] [-o OUTPUT] [-d DESTINATION] [--halt]
                   [--no-output] [--check] [--single]
                   input_file

positional arguments:
  input_file            the file to be converted

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        specify the filetype to convert from. Use when
                        CDLConvert cannot determine the filetype
                        automatically. Supported input formats are: ['flex',
                        'cc', 'ale', 'cdl', 'rcdl', 'ccc']
  -o OUTPUT, --output OUTPUT
                        specify the filetype to convert to, comma separated
                        lists are accepted. Defaults to a .cc XML. Supported
                        output formats are: ['cc', 'cdl', 'ccc', 'rcdl']
  -d DESTINATION, --destination DESTINATION
                        specify an output directory to save converted files
                        to. If not provided will default to ./converted/
  --halt                turns off exception handling default behavior. Turn
                        this on if you want the conversion process to fail and
                        not continue,rather than relying on default behavior
                        for bad values. Examples are clipping negative values
                        to 0.0 for Slope, Power and Saturation, and
                        automatically generating a new id for a ColorCorrect
                        if no or a bad id is given.
  --no-output           parses all incoming files but no files will be
                        written. Use this in conjunction with '--halt' and '--
                        check' to try and track down any oddities observed in
                        the CDLs.
  --check               checks all ColorCorrects that were parsed for odd
                        values. Odd values are any values over 3 or under 0.1
                        for Slope, Power and Saturation. For offset, any value
                        over 1 and under -1 is flagged. Note that depending on
                        the look, these still might be correct values.
  --single              only write a single color decision per file when given
                        collection formats. This means that a single input CDL
                        will export multipleCDL files, one per color decision.
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ColorCorrection Usage

Once installed with pip, importing cdl_convert works like importing any
other python module.

>>> import cdl_convert as cdl






Creating ColorCorrection

Once imported, you have two choices. You can either instantiate a new, blank
cdl directly, or you can parse a file on disk.

A ColorCorrection is created with the 10 required values (RGB values
for slope, offset and power, and a single value for saturation) set to their
defaults.

>>> cc.slope
(Decimal('1.0'), Decimal('1.0'), Decimal('1.0'))
>>> cc.offset
(Decimal('0.0'), Decimal('0.0'), Decimal('0.0'))
>>> cc.power
(Decimal('1.0'), Decimal('1.0'), Decimal('1.0'))
>>> cc.sat
Decimal('1.0')






Note

slope, offset, power and sat are convenience properties that
actually reference two child objects of ColorCorrection , a
SopNode and a SatNode . Calling them via cc.power
is the same as calling cc.sop_node.power.



The ColorCorrection class inherits from both the
AscColorSpaceBase class, and the AscDescBase class, giving it
the additional attributes of input_desc (to describe the colorspace entering
the correction, viewing_desc (to describe the colorspace conversions that
must occur for viewing, and what type of monitor was used), and desc (which
can be an infinitely long list of shot descriptions)


Direct Creation

If you want to create a new instance of ColorCorrection, you have to
provide an id, for the unique cdl identifier and an optional source
filename to input_file.

>>> cc = cdl.ColorCorrection(id='cc1', input_file='./myfirstcdl.cc')






Warning

When an instance of ColorCorrection is first created, the id
provided is checked against a class level dictionary variable named
members to ensure that no two ColorCorrection share the same
id , as this is required by the specification.

Giving duplicate id will result in a number being appended to the back,
unless HALT_ON_ERROR is set, in which case it will fail.

Reset the members list by calling the reset_members method of
ColorCorrection or reset all class member list and dictionaries
with cdl_convert.reset_all.






Parsing a single correction CDL file

Instead of creating a blank CDL object, you can parse a cc file from disk,
and it will return a single ColorCorrection matching the correction
found in the file. Formats that contain multiple corrections will return
a ColorCollection , which contains child ColorCorrection .

If you don’t want to worry about matching the filetype to a parser, just use
the generic parse_file function.

>>> cdl.parse_file('./myfirstcdl.cc')
<cdl_convert.correction.ColorCorrection object at 0x1004a5590>
>>> collection = cdl.parse_file('/myfirstedl.ccc')
<cdl_convert.collection.ColorCollection object at 0x100633b40>,
>>> collection.color_corrections
[
    <cdl_convert.correction.ColorCorrection object at 0x100633b90>,
    <cdl_convert.correction.ColorCorrection object at 0x100633c50>,
    <cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
    <cdl_convert.correction.ColorCorrection object at 0x100633b50>,
    <cdl_convert.correction.ColorCorrection object at 0x100633d90>,
    <cdl_convert.correction.ColorCorrection object at 0x100633b10>,
    <cdl_convert.correction.ColorCorrection object at 0x100633ad0>,
]





Once you have a ColorCorrection from a parser, you’ll find that
whatever values it found on the file now exist on the instance of
ColorCorrection.

>>> cc = cdl.parse_cc('./xf/015.cc')
>>> cc.slope
(Decimal('1.02401'), Decimal('1.00804'), Decimal('0.89562'))
>>> cc.offset
(Decimal('-0.00864'), Decimal('-0.00261'), Decimal('0.03612'))
>>> cc.power
(Decimal('1.0'), Decimal('1.0'), Decimal('1.0'))
>>> cc.sat
Decimal('1.2')
>>> cc.id
'015_xf_seqGrade_v01'
>>> cc.file_in
'/Users/niven/cdls/xf/015.cc'






Note

When parsing, the id attribute is set in a variety of ways depending
on how much information is available. Some formats, like cc, have an
explicitly tagged id field that is always used. Other formats, like
flex, have no such field and the parser tries to grab any scene/take
metadata it can find to construct one. The last fallback is always the
filename. For formats that can contain multiple ColorCorrection ,
the id has a created instance number after it.








Using ColorCorrection


Slope, Offset and Power

Setting the CDL slope, offset and power (SOP) values is as easy as passing them
any list or tuple with three values. Integers, strings and floats will be
automatically converted to Decimals, while slope and power will also truncate
at zero.

>>> cc.slope = ('1.234', 5, 273891.37823)
>>> cc.slope
(Decimal('1.234'), Decimal('5.0'), Decimal('273891.37823'))
>>> cc.offset = (-0.0013, 0.097, 0.001)
>>> cc.offset
(Decimal('-0.0013'), Decimal('0.097'), Decimal('0.001'))
>>> cc.power = (-0.01, 1.0, 1.0)
>>> cc.power
(Decimal('0.0'), Decimal('1.0'), Decimal('1.0'))
>>> cc.power = (1.01, 1.007)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "cdl_convert/correction.py", line 306, in power
    self.sop_node.power = power_rgb
  File "cdl_convert/correction.py", line 668, in power
    value = self._check_setter_value(value, 'power')
  File "cdl_convert/correction.py", line 767, in _check_setter_value
    value = self._check_rgb_values(value, name, negative_allow)
  File "cdl_convert/correction.py", line 709, in _check_rgb_values
    values=values
ValueError: Error setting power with value: "(1.01, 1.007)". Power values given as a list or tuple must have 3 elements, one for each color.





It’s also possible to set the SOP values with a single value, and have it
copy itself across all three colors. Setting SOP values this way mimics how
color corrections typically start out.

>>> cc.slope = 1.2
>>> cc.slope
(Decimal('1.2'), Decimal('1.2'), Decimal('1.2'))








Saturation

Saturation is a positive float values, and the same checks and conversions
that we do on SOP values happen for saturation as well.

>>> cc.sat = 1.1
>>> cc.sat
Decimal('1.1')
>>> cc.sat = '1.2'
>>> cc.sat
Decimal('1.2')
>>> cc.sat = 1
>>> cc.sat
Decimal('1.0')
>>> cc.sat = -0.1
>>> cc.sat
Decimal('0.0')






Warning

If it’s desired to have negative values raise an exception instead of
truncating to zero, set the global config module variable HALT_ON_ERROR
to be True.

>>> cdl.config.HALT_ON_ERROR = True
>>> cc.power = (-0.01, 1.0, 1.0)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "cdl_convert/correction.py", line 306, in power
    self.sop_node.power = power_rgb
  File "cdl_convert/correction.py", line 668, in power
    value = self._check_setter_value(value, 'power')
  File "cdl_convert/correction.py", line 767, in _check_setter_value
    value = self._check_rgb_values(value, name, negative_allow)
  File "cdl_convert/correction.py", line 720, in _check_rgb_values
    negative_allow
  File "cdl_convert/base.py", line 419, in _check_single_value
    value=value
ValueError: Error setting power with value: "-0.01". Values must not be negative










Description

Certain formats of the cdl will contain multiple description entries. Each
description entry is added to the desc attribute, which returns a list of
the entries.

>>> cc.desc
['John enters the room', '5.6 ISO 800', 'bad take']





You can append to list by setting the description field like normal.

>>> cc.desc = 'final cc'
>>> cc.desc
['John enters the room', '5.6 ISO 800', 'bad take', 'final cc]





Setting the value to a new list or tuple will replace the list.

>>> cc.desc
['John enters the room', '5.6 ISO 800', 'bad take', 'final cc]
>>> cc.desc = ['first comment', 'second comment']
>>> cc.desc
['first comment', 'second comment']








Id and Files

When creating a ColorCorrection, the id field is checked against a
global list of ColorCorrection ids, and creation fails if the id
is not unique.

You can change the id after creation, but it will perform the same check.

>>> cc = cdl.ColorCorrection(id='cc1', input_file='./myfirstcdl.cc')
>>> cc2 = cdl.ColorCorrection(id='cc2', input_file='./mysecondcdl.cc')
>>> cc.id
'cc1'
>>> cc2.id
'cc2'
>>> cc2.id = 'cc1'
Traceback (most recent call last):
  File "<ipython-input-8-b2b5487dbc63>", line 1, in <module>
    cc2.id = 'cc1'
  File "cdl_convert/correction.py", line 362, in id
    self._set_id(value)
  File "cdl_convert/correction.py", line 430, in _set_id
    cc_id=cc_id
ValueError: Error setting the id to "cc1". This id is already a registered id.





A ValueError is only raised if HALT_ON_ERROR is set. If HALT_ON_ERROR
is not set (default), a number will be appended to the non-duplicate ID.

So if you already have a ColorCorrection with the id of ‘sh100cc’, the second
ColorCorrection you set to have that id will actually set to ‘sh100cc001’.

At the current time, file_out cannot be set directly. file_out is
determined by using the class method determine_dest, which takes a
provided directory, the id and figures out the output path.

>>> cc.file_in
'/Users/sean/cdls/xf/015.cc'
>>> cc.file_out
>>> cc.determine_dest('cdl', '/Users/potter/cdls/converted/')
>>> cc.id
'015_xf_seqGrade_v01'
>>> cc.file_out
'/Users/potter/cdls/converted/015_xf_seqGrade_v01.cdl'










Writing ColorCorrection

When you’re done tinkering with the ColorCorrection instance, you
might want to write it out to a file. We need to give ColorCorrection the
file extension we plan to write to, then call a write function with our
ColorCorrection instance, which will actually convert the values on
the ColorCorrection into the format desired, then write that format
to disk.

>>> cc.determine_dest('cdl', '/Users/potter/cdls/converted/')
>>> cc.file_out
'/Users/potter/cdls/converted/015_xf_seqGrade_v01.cdl'
>>> cdl.write_cdl(cc)






Warning

It is highly likely that in the future, these will be methods on the
ColorCorrection class itself, and that instead of writing the
file directly, they will instead return a string formatted for writing.
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Color Collections

Once installed with pip, importing cdl_convert works like importing any
other python module.

>>> import cdl_convert as cdl






Creating ColorCollection

The ColorCollection class represents both the
ColorCorrectionCollection and ColorDecisionList containers of the ASC
CDL spec.

The distinctions between the two are fairly trivial:

ColorCorrectionCollection contain one or more ColorCorrections
(which directly correspond to ColorCorrection ), as well as the normal
Description, InputDescription and ViewingDescription fields.

ColorDecisionList contain ColorDecision (directly corresponding to
ColorDecision ) instead of ColorCorrection . Those
ColorDecision in turn contain the same ColorCorrection elements
that ColorCorrectionCollection directly contains. Alongside the
ColorCorrection are optional MediaRef elements (again directly
corresponding to MediaRef ), which simply contain a path to reference
media for the ColorCorrection alongside.


Note

One final difference is that instead of a ColorCorrection
element, a ColorDecision could instead contain a ColorCorrectionRef,
which is simply an id reference to another ``ColorCorrection.



ColorCollection has a type attribute that determines what
the ColorCollection currently describes when you call its XML
attributes. Setting this to 'ccc' will cause a
ColorCorrectionCorrection to be returned when the xml attribute is
retrieved. Setting it to 'cdl' causes a ColorDecisionList to appear
instead.


Note

No matter what combination of ColorDecision or ColorCorrection a
single ColorCollection has, any members of the ‘opposite’ class
will be displayed correctly when you switch the type.

If you have 3 ColorDecision (each with their own
ColorCorrection ) under the color_decisions attribute, and 4
ColorCorrection under the color_corrections attribute,
the XML will export 7 ColorCorrection elements when type is set to
'ccc', and 7 ColorDecision elements when type is set to
'cdl'.

The converted elements are created ‘on the fly’ and are not saved, simply
exported that way.



Unlike a ColorCorrection , ColorCollection does not have any
default values. The description attributes it inherits from
AscColorSpaceBase and AscDescBase default to none.

Those inherited attributes are input_desc (to describe the colorspace
entering the correction, viewing_desc (to describe the colorspace
conversions that must occur for viewing, and what type of monitor was used),
and desc (which can be an infinitely long list of shot descriptions)


Note

When a child ColorCorrection does not have an input_desc
or a viewing_desc of it’s own and that child is exported alone to a
.cc file, the descriptions from it’s parent are used.

When a child ColorCorrection has an input_desc or a
viewing_desc, that attribute is considered to have overruled the parent
attribute.

In both cases, desc``s from the parent are prepended to the child node's
``desc.

When elements (such as desc) are placed into the child
ColorCorrection, their text data is prepended with
From Parent Collection: to easily distinguish between inherited fields
and native.




Warning

The above note describes behavior not yet implemeneted and should be
ignored. The author of the above note has been sacked.




Direct Creation

Creating a new ColorCollection is easy, and requires no arguments.

>>> ccc = cdl.ColorCollection()





Alternatively, you can pass in an input_file:

>>> ccc = cdl.ColorCollection(input_file='CoolMovieSequence.ccc')
>>> ccc.file_in
'/proj/UltimateMovie/share/color/CoolMovieSequence.ccc'








Parsing a CDL Collection file

When the collection you want to manipulate already exists, you’ll want to parse
the file on disk. EDL files, .ccc and .cdl files all return a single
ColorCollection object, which contains all the child color corrections.

>>> collection = cdl.parse_ccc('/myfirstedl.ccc')
<cdl_convert.ColorCollection object at 0x100633b40>,
>>> collection.color_corrections
[
    <cdl_convert.correction.ColorCorrection object at 0x100633b90>,
    <cdl_convert.correction.ColorCorrection object at 0x100633c50>,
    <cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
    <cdl_convert.correction.ColorCorrection object at 0x100633b50>,
    <cdl_convert.correction.ColorCorrection object at 0x100633d90>,
    <cdl_convert.correction.ColorCorrection object at 0x100633b10>,
    <cdl_convert.correction.ColorCorrection object at 0x100633ad0>,
]





When parsing to a ColorCollection from disk, the type of file you
parse determines what type is set to. Parsing an EDL or a .cdl file
creates a ColorCollection with a type of 'cdl' (since EDLs
contain many media references and may even include ColorCorrectionRef
elements), while parsing a .ccc file or multiple .cc files will create
an instance with a type of 'ccc'.


Note

At the current time, parsing EDLs results on a ccc collection, not a
cdl as stated above.








Using ColorCollection


Adding children to ColorCollection

Already created ColorCorrection or ColorDecision can be
added to the correct child list by calling the append_child method.

>>> ccc.color_corrections
[]
>>> ccc.append_child(cc)
>>> ccc.color_corrections
[
    <cdl_convert.correction.ColorCorrection object at 0x1004a5590>
]
>>> ccc.append_child(cd)
>>> ccc.color_decisions
[
    <cdl_convert.decision.ColorDecision object at 0x1004a5510>
]





append_child automatically detects which type of child you are attempting to
append, and places it in the correct list. You can use append_children to
append a list of children at once- the list can even contain mixed classes.


>>> list_of_colors
[
    <cdl_convert.correction.ColorCorrection object at 0x100633b90>,
    <cdl_convert.decision.ColorDecision object at 0x100633b10>,
    <cdl_convert.correction.ColorCorrection object at 0x100633c50>,
    <cdl_convert.correction.ColorCorrection object at 0x100633b50>,
    <cdl_convert.decision.ColorDecision object at 0x100633d90>,
    <cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
    <cdl_convert.decision.ColorDecision object at 0x100633ad0>,
]
>>> ccc.append_children(list_of_colors)
>>> ccc.color_corrections
[
    <cdl_convert.correction.ColorCorrection object at 0x100633b90>,
    <cdl_convert.correction.ColorCorrection object at 0x100633c50>,
    <cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
    <cdl_convert.correction.ColorCorrection object at 0x100633b50>,
]
>>> ccc.color_decisions
[
    <cdl_convert.decision.ColorDecision object at 0x100633d90>,
    <cdl_convert.decision.ColorDecision object at 0x100633b10>,
    <cdl_convert.decision.ColorDecision object at 0x100633ad0>,
]





append_child and append_children will fail if you attempt to append
a child which has a matching id to an already present child. The only
exception is a ColorCorrectionRef , which of course should
have the same id as a full ColorCorrection .





Warning

Both appand_child and append_children will change the parent
attribute of ColorCorrection and ColorDecision to point
to the ColorCollection they are appending to. Since we don’t
enforce a 1 parent to each child relationship, it’s very easy to
accidentally lose track of original parentage.

While the child’s parent attribute might point to another
ColorCollection, the children of a collection will never
be removed from the color_corrections, color_decisions and
all_children lists.

You can immediately reset the parent attribute to point to a specific
instance of ColorCollection by calling the set_parentage
method.






Merging multiple ColorCollection

If you have multiple ColorCollection and wish to end up with a single
collection, you’ll need to merge them together. Assuming you have two
ColorCollection with the names ccc and dl with the following
information:

>>> ccc.input_desc
'LogC to sRGB'
>>> ccc.viewing_desc
'DaVinci Resolve on Eizo'
>>> ccc.desc
[
    'When Babies Attack Test DI',
    'Do not use for final',
    'Color by Zap Brannigan',
]
>>> ccc.type
'ccc'
>>> ccc.all_children
[
    <cdl_convert.correction.ColorCorrection object at 0x100633b90>,
    <cdl_convert.correction.ColorCorrection object at 0x100633c50>,
    <cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
    <cdl_convert.correction.ColorCorrection object at 0x100633b50>,
]
>>> dl.input_desc
'Cineon Log'
>>> dl.viewing_desc
'Panasonic Plasma rec709'
>>> dl.desc
[
    'Animals shot with a fisheye lens',
    'cute fluffy animals',
    'watch for blown out highlights',
    'Color by Zap Brannigan',
]
>>> dl.type
'cdl'
>>> dl.all_children
[
    <cdl_convert.decision.ColorDecision object at 0x100633d90>,
    <cdl_convert.decision.ColorDecision object at 0x100633b10>,
    <cdl_convert.decision.ColorDecision object at 0x100633ad0>,
]





You merge by choosing a ‘parent’ collection, and calling the
merge_collections method on it.

>>> merged = ccc.merge_collections([dl])
>>> merged.all_children
[
    <cdl_convert.correction.ColorCorrection object at 0x100633b90>,
    <cdl_convert.correction.ColorCorrection object at 0x100633c50>,
    <cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
    <cdl_convert.correction.ColorCorrection object at 0x100633b50>,
    <cdl_convert.decision.ColorDecision object at 0x100633d90>,
    <cdl_convert.decision.ColorDecision object at 0x100633b10>,
    <cdl_convert.decision.ColorDecision object at 0x100633ad0>,
]






Note

When merging multiple ColorCollection , any duplicate children
objects (if you had the same ColorCorrection object assigned as a
child to multiple ColorCollection ) are removed, so the list only
contains unique members.



The parent determines which Input and Viewing Description
overrides all of the other merged collections. type is also set to match
the type of the parent. Since ccc was our parent:

>>> merged.input_desc
'LogC to sRGB'
>>> merged.viewing_desc
'DaVinci Resolve on Eizo'
>>> merged.type
'ccc'





If we had used dl as the merged parent:

>>> merged = dl.merge_collections([ccc])
>>> merged.input_desc
'Cineon Log'
>>> merged.viewing_desc
'Panasonic Plasma rec709'
>>> merged.type
'cdl'





Unlike the Input and Viewing Descriptions, the normal Description attributes
are all merged together.

>>> merged.desc
[
    'When Babies Attack Test DI',
    'Do not use for final',
    'Color by Zap Brannigan',
    'Animals shot with a fisheye lens',
    'cute fluffy animals',
    'watch for blown out highlights',
    'Color by Zap Brannigan',
]






Note

Unlike the lists of children, duplicates are not removed from the list of
descriptions.
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Installation


Pip Install

Using pip is the preferred method of installation, as it installs cdl_convert
both as a python module and a script.

$ pip install cdl_convert








Script Only Installation

If you don’t want to bother with a pip style install, you can alternatively
grab the entire cdl_convert [http://github.com/shidarin/cdl_convert/] directory, then set up a shortcut to call
cdl_convert/cdl_convert.py

Creating aliases, etc are beyond the scope of this documentation.
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Changelog


Version 0.9.2


	Fixed a bug where ALE’s with blank lines would not convert correctly.

	Fixed a bug that was preventing cdl_convert from being correctly installed in Python 2.6

	Fixed continuous integration testing.

	No longer officially supporting Python 3.2, as I’ve had to remove it from our CI builds. It should still work just fine though, but we won’t be running CI against it.






Version 0.9


	Added ability to parse CMX EDLs

	Fixed a script bug where a collection format containing color decisions will not have those color decisions exported as individual color corrections.

	Fixed a bug where we weren’t reading line endings correctly in certain situations.

	Added a cdl_convert.py stub file to the package root level, which will allow running of the cdl_convert script without installation. Due to relative imports in the python code, it was no longer possible to call cdl_convert/cdl_convert.py directly.

	The script, when run directly from cdl_convert.py, will now write errors to stderror correctly, and exit with a status of 1.






Version 0.8


	Added –single flag. When provided with an output collection format, each color correction in the input will be exported to it’s own collection.

	Giving a ColorCorrection a non-duplicate ID now works unless the --halt flag is given. This means that incoming collections that contain duplicate IDs will not fail out.






Version 0.7.1


	Fixed bug where ALE’s without ‘Scan Filename’ fields could not parse correctly.






Version 0.7

The biggest change in 0.7 is the addition of collection format support.
.ccc, Color Correction Collections, can now be parsed and written. .cdl,
Color Decision Lists, can now be parsed and written. .ale
and .flex files now return a collection.


	
	New script flags:

	
	Adds --check flag to script, which checks all parsed ColorCorrects for sane values, and prints warnings to shell

	Adds -d, --destination flag to the script, which allows user to specify the output directory converted files will be written to.

	Adds --no-ouput flag to the script, which goes through the entire conversion process but doesn’t actually write anything to disk. Useful for troubleshooting, especially when combined with --check

	Adds --halt flag to the script, which halts on errors that can be resolved safely (such as negative slope or power values)









	Renames ColorCollectionBase to ColorCollection , since it will be used directly by both ccc and cdl.



	Adds parse_ccc which returns a ColorCollection .



	Adds write_ccc which writes a ColorCollection as a ccc file.



	Adds parse_cdl which returns a ColorCollection .



	Adds write_cdl which returns a ColorCollection as a cdl file.



	ColorCollection is now a fully functional container class, with many attributes and methods.



	Added ColorDecision , which stores either a ColorCorrection or ColorCorrectionRef , and an optional MediaRef



	Added ColorCorrectionRef , which stores a reference to a ColorCorrection



	Added parent attribute to ColorCorrection .



	Calling sop_node or sat_node on a ColorCorrection before attempting to set a SOP or Sat power now works.



	ColorCorrection cdl_file init argument renamed to input_file, which is now optional and able to be set after init.



	parse_cc and parse_rnh_cdl now only yield a single ColorCorrection , not a single member list.



	Added dev-requirements.txt (contains mock)



	All determine_dest methods now take a second directory argument, which determines the output directory.



	Adds sanity_check function which prints values which might be unusual to stdout.



	parse_cdl and write_cdl renamed to parse_rnh_cdl and write_rnh_cdl respectively.



	
	member_reset methods:

	
	ColorCorrection now has a reset_members method, which resets the class level member’s dictionary.

	MediaRef also has a reset_members method, as does ColorCollection

	reset_all function calls all of the above reset_members methods at once.









	
	Renamed cdl_file argument:

	
	parse_cc cdl_file arg renamed to input_file and now accepts a either a raw string or an ElementTree Element as input_file.

	parse_rnh_cdl cdl_file arg renamed to input_file.

	parse_ale edl_file arg renamed to input_file.

	parse_flex edl_file arg renamed to input_file.









	
	Python Structure Refactoring

	
	Moved HALT_ON_ERROR into the config module, which should now be referenced and set by importing the entire config module, and referencing or setting config.HALT_ON_ERROR

	Script functionality remains in cdl_convert.cdl_convert, but everything else has been moved out.

	AscColorSpaceBase , AscDescBase , AscXMLBase and ColorNodeBase now live under cdl_convert.base

	ColorCollection now lives in cdl_convert.collection

	ColorCorrection , SatNode and SopNode now live under cdl_convert.correction

	ColorDecision , ColorCorrectionRef and MediaRef now live under cdl_convert.decision

	All parse functions now live under cdl_convert.parse

	All write functions now live under cdl_convert.write

	sanity_check now live under cdl_convert.utils

	reset_all now lives under the main module














Version 0.6.1


	Added AscXMLBase class for nodes that can be represented by XML to inherit.

	Suppressed scientific notation from being written out when writing files. Should now write out as close as Python accuracy allows, and the same number of digits.

	write_cc now writes out 100% correct XML using ElementTree.

	Added tests for write_cc, which brings our coverage to 100%






Version 0.6


	Adds much greater ASC CDL XML compliance with the addition of many classes that represent node concepts in the CDL XML schema.



	Moves viewing_desc and input_desc attributes and methods into the base class AscColorSpaceBase .



	Moved desc attribute and methods into the base class AscDescBase .



	Adds ColorCollectionBase class for a basis of all collection type nodes (ColorCorrectionCollection , ColorDecisionList , etc).



	Adds MediaRef class which represents the MediaRef node of a ColorDecision. This class allows convenient handling of files given as media reference.



	Adds HALT_ON_ERROR module variable which determines certain exception handling behavior. Exceptions that can normally be handled with default behavior (such as negative Slope or Power values) will be dealt with silently instead of stopping the program. Negative Slope and Power values, for example, will clip to 0.0.



	
	ColorCorrection (formally AscCdl) class changes:

	
	Renames AscCdl to ColorCorrection .

	Adds class level member dictionary, which allows lookup of a ColorCorrection instance by the unique ID.

	ColorCorrection objects now require a unique ID to be instantiated.

	Removes metadata attribute of ColorCorrection .

	Moves SOP and SAT operations out of ColorCorrection into their own classes, which are based on ColorNodeBase . The SatNode and SopNode classes are still meant to be children of ColorCorrection.

	Added sop_node and sat_node attributes to access the child SatNode and SopNode .

	Removed metadata attribute, splitting it into the inherited attributes of input_desc, viewing_desc and desc.

	desc attribute is now fully fleshed out as a list of all encountered description fields.

	Renamed cc_id field to id, shadowing the built in id within the class.

	Slope, Offset and Power now return as a tuple instead of a list to prevent index assignment, appending and extending.









	
	parse_cc should now parse a much greater variety of .cc files more accurately.

	
	Now supports infinite Description fields

	Now supports Viewing and Input Description fields

	Significantly simplifies the function.









	parse_flex has been significantly simplified.



	Test Suite broken up into sub-modules.



	Adds PyPy support.



	Adds ReadTheDocs



	Adds docs to build








Version 0.5


	Project is now structured according to Python packaging guidelines with setup.py etc.

	Some AscCdl attributes have been moved into dictionaries (Note that this was later reversed in release 0.6)

	Refactors some parse functions to be less complex

	Makes write_cdl much simpler and more pythonic.






Version 0.4.2


	Hotfix to fix from __future__ imports






Version 0.4.1


	PEP 8 [https://www.python.org/dev/peps/pep-0008] conversion

	landscape.io support

	Uses from __future__ for print






Version 0.4


	Python 3 compatible

	More unit testing bug fixes and enhancements.

	Adds better type and exception handling for AscCdl setters.

	Now sanitizes id fields of any characters they shouldn’t contain.

	Test suite runs on windows now

	Adds Travis-ci for continuous integration testing

	parse_cc now uses ElementTree for XML parsing
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Support


GitHub

At cdl_convert‘s GitHub [http://github.com/shidarin/cdl_convert] page you can browse the code and the history of
the project.

Builds can be downloaded from the GitHub page or the PyPI [http://pypi.python.org/pypi/cdl_convert] repository entry.




Bug Reporting

The issues [http://github.com/shidarin/cdl_convert/issues] page on GitHub is the best place to report bugs or request support,
and while cdl_convert is distributed with no warranty of any kind, issues
will be read and helped if able.

Please fill out an issue describing the problem you are having. Attaching sample
files to show what’s not working, and the full printout from your shell.




Contact

Support will not be given over email, twitter, etc. If you need support, use the
issues [http://github.com/shidarin/cdl_convert/issues] page at GitHub. That said, if you want to say ‘hi’ or see what I’m
currently working on, you can try me at one of the following:


	twitter: @shidarin [http://twitter.com/shidarin]

	email: shidarin@alphamatte.com

	github blog: http://shidarin.github.io/
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Frequently Asked Questions


Python 2 & 3 Support


	
	What versions of Python does cdl_convert support?

	cdl_convert works in Python 2.6 through 3.4 and PyPy. A full test suite
runs continuous integration through Travis-ci.org [http://travis-ci.org/shidarin/cdl_convert], coverage through
coveralls.io [http://coveralls.io/r/shidarin/cdl_convert], and code quality checked with landscape.io [http://landscape.io/]. Code is
PEP 8 [https://www.python.org/dev/peps/pep-0008] compliant, with docstrings following google code [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html#Comments] docstring
standards.







	
	Really? It works on both Python 2 and 3? And PyPy?

	Yes. No conversion or modification needed.












CDL Format Support


	
	Why don’t you support format X?

	I either haven’t had time to build a parser for the format yet, or I might
even be unaware it exists. Perhaps you should drop by the issues [http://github.com/shidarin/cdl_convert/issues] page
and create a request for the format? If creating a request for a format it
helps immensely to have a sample of that format.












Project Structure


	
	Why the underscore?

	cdl_convert started as a simple script to convert from one format to
another. As such, it wasn’t named with the standards that one would usually
use for a python module. By the time the project became big enough, was on
PyPI, etc, it was too spread out on the web, in too many places to make
changing easy. In the end, I opted to keep it. At some point,
cdl_convert might migrate into a larger, more generic film & tv
python module, which will be named properly.
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Contributing


Note

Portions of this page have been modified from the excellent
OpenComparison project docs [http://opencomparison.readthedocs.org/en/latest/contributing.html].




Contributing CDL and EDL Samples

Please, please, please submit samples of the following formats:


	FLEx

	ALE

	CMX

	CCC

	CDL



These are complex formats, and seeing real world samples helps write tests
that ensure correct parsing of real world EDLs and CDLs. If you don’t even see
a format of CDL listed that you know exists, open an issue at the github
issues [http://github.com/shidarin/cdl_convert/issues] page asking for parse/write support for the format, and include a
sample.




Issues & Bugs

Take a look at the issues [http://github.com/shidarin/cdl_convert/issues] page and if you see something that you think you
can bang out, leave a comment saying you’re going to take it on. While many
issues are already assigned to the principal authors, just because it’s assigned
doesn’t mean any work has begun.

Feel welcome to post issues, feature requests and bugs that aren’t present.




Workflow

cdl_convert is a GitFlow [http://nvie.com/posts/a-successful-git-branching-model/] workflow project. If you’re not familiar with
GitFlow, please take a moment to read the workflow documentation. Essentially
it means that all work beyond tiny bug fixes needs to be done on it’s own
feature branch, called something like feature/thing_I_am_fixing.

After you fork the repository, take a second to create a new feature branch from
the develop branch and checkout that newly created branch.


Submitting Your Fix

Once you’ve pushed your feature branch to GitHub, it’s time to generate a pull
request back to the central cdl_convert repository.

The pull request let’s you attach a comment, and when you’re addressing an issue
it’s imperative to link to that issue in the initial pull request comment.
We’ll shortly be notified of your request and it will be reviewed as soon as
possible.


Warning

If you continue to add commits to the feature branch you submitted as
a pull request, the pull request will be updated with those changes (as
long as you push those changes to GitHub). This is why you should not
submit a pull request of the develop branch.








Pull Request Tips

cdl_convert really needs your collaboration, but we only have so much time
to work on the project and merge your fixes and features in. There’s some easy
to follow guidelines that will ensure your pull request is accepted and integrated
quickly.


Run the tests!

Before you submit a pull request, please run the entire test suite via

$ python setup.py test





If the tests are failing, it’s likely that you accidentally broke something.
Note which tests are failing, and how your code might have affected them. If
your change is intentional- for example you made it so urls all read https://
instead of http://, adjust the test suite, get it back into a passing state,
and then submit it.

If your code fails the tests (Travis-ci.org [http://travis-ci.org/shidarin/cdl_convert] checks all pull requests when
you create them) it will be rejected.




Add tests for your new code

If your pull request adds a feature but lacks tests then it will be rejected.

Tests are written using the standard unittest framework. Please keep test cases
as simple as possible while maintaining a good coverage of the code you added.


Warning

Tests are currently written in the style of unittest with camelCased
method & variable names. Please follow PEP 8 [https://www.python.org/dev/peps/pep-0008] otherwise.






Don’t mix code changes with whitespace cleanup

If you change two lines of code and correct 200 lines of whitespace issues in a
file the diff on that pull request is functionally unreadable and will be
rejected. Whitespace cleanups need to be in their own pull request.




Keep your pull requests limited to a single issue

Pull requests should be as small/atomic as possible. Large, wide-sweeping
changes in a pull request will be rejected, with comments to isolate the
specific code in your pull request.




Follow PEP-8 and keep your code simple!

Memorize the Zen of Python

>>> python -c 'import this'





Please keep your code as clean and straightforward as possible.
When we see more than one or two functions/methods starting with
_my_special_function or things like __builtins__.object = str
we start to get worried. Rather than try and figure out your brilliant work
we’ll just reject it and send along a request for simplification.

Furthermore, the pixel shortage is over. We want to see:


	package instead of pkg

	grid instead of g

	my_function_that_does_things instead of mftdt



If the code style doesn’t follow PEP 8 [https://www.python.org/dev/peps/pep-0008] , it’s going to be rejected.






Copyright of Submitted Contributions

When submitting, you’ll be asked to waive copyright to your submitted code to
the listed authors. This is so we can keep a tight handle on the code and change
the license for future releases if needed.
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Licenses


Software

The MIT License (MIT)


cdl_convert

Copyright (c) 2015 Sean Wallitsch

http://github.com/shidarin/cdl_convert/



Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.




Documentation


cdl_convert

The MIT License (MIT)


cdl_convert

Copyright (c) 2015 Sean Wallitsch

http://github.com/shidarin/cdl_convert/



Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.




OpenComparison

Portions of this project’s documentation used the excellent
OpenComparison project docs [http://opencomparison.readthedocs.org/en/latest/contributing.html] as a base, and their license must accompany it:

Copyright (c) 2010-2012 Audrey Roy, Daniel Greenfeld, and contributors.

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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API Reference


Classes


	The class structure of cdl_convert mirrors the element structure of the

	XML schema for ccc, cdl and cc files as defined by the



ASC. The XML schema’s represent the most complicated and structured variant of
the format, and therefore it behooves the project to mimic their structure.

However, where similar elements exist as entirely separate entities in the XML
schema, they might have been combined here.


AscColorSpaceBase

Classes that deal with input and viewer colorspace can subclass from this class
to get the input_desc and viewing_desc attributes.


	
class cdl_convert.base.AscColorSpaceBase

	Base class for Asc XML type nodes that deal with colorspace

This class is meant to be inherited by any node type that used viewing and
input colorspace descriptions.

This class doesn’t do a lot right now, as we don’t have any specific
controls on how to set or retrieve these fields. In the future however,
we’ll parse incoming descriptions to try and resolve input colorspace and
viewing colorspace.

Attributes:



	input_desc : (str)

	Description of the color space, format and properties of the input
images. Individual ColorCorrections can override this.

	viewing_desc : (str)

	Viewing device, settings and environment. Individual
ColorCorrections can override this.






Public Methods:



	parse_xml_input_desc()

	Parses an ElementTree Element to find & add an InputDescription.
If none is found, input_desc will remain set to None.

	parse_xml_viewing_desc()

	Parses an ElementTree Element to find & add a ViewingDescription.
If none is found, viewing_desc will remain set to None.













AscDescBase

Classes that are allowed to have a description field subclass from this from
this class to get the desc attribute. The desc attribute can be set
with a single string, which will append to the list of strings already present
in desc. If set to a list or tuple, desc will become a list of those
values. If set to None, desc will become an empty list.


	
class cdl_convert.base.AscDescBase

	Base class for most Asc XML type nodes, allows for infinite desc

This class is meant to be inherited by any node type that uses description
fields.

Attributes:



	desc : [str]

	Since all Asc nodes which can contain a single description, can
actually contain an infinite number of descriptions, the desc
attribute is a list, allowing us to store every single description
found during parsing.

Setting desc directly will cause the value given to append to the
end of the list, but desc can also be replaced by passing it a list
or tuple. Desc can be emptied by passing it None, [] or ().








Public Methods:



	parse_xml_descs()

	Parses an ElementTree Element for any Description tags and appends
any text they contain to the desc.













AscXMLBase


	
class cdl_convert.base.AscXMLBase

	Base class for nodes which can be converted to XML Elements

This class contains several convenience attributes which can be used
to retrieve ElementTree Elements, or nicely formatted strings.

Attributes:



	element : (<xml.etree.ElementTree.Element>)

	etree style Element representing the node.

	xml : (str)

	A nicely formatted XML string representing the node.

	xml_root : (str)

	A nicely formatted XML, ready to write to file string representing
the node. Formatted as an XML root, it includes the xml version and
encoding tags on the first line.






Public Methods:



	build_element()

	A placeholder method to be overridden by inheriting classes,
calling it will always return None.













ColorCollection

This class functions as both a ColorDecisionList and a
ColorCorrectionCollection. It’s children can be either ColorDecisions,
ColorCorrections, or a combination of the two. Despite being able to
have either type of child, the ColorCollection still needs to know
which type of collection you want it to represent.

Setting the type of the ColorCollection to either ccc or
cdl causes children of the opposite type to be converted into the
appropriate type when exporting the class.


Note

parse_ale and parse_flex both return as a ccc at this time,
contrary to the documentation below.

In addition, the inclusion of parent metadata into orphaned children is
also a work in progress.



If parse_ale is used to parse an ale edl file, the ale will be
read into a ColorCollection set to cdl and the children the
ale creates will actually be ColorDecision , as that allows
for the easy inclusion of MediaRef objects. If you then use
write_ccc to write a ccc file, all the children ColorDecision
will create XML elements for their ColorCorrection children,
adding in any MediaRef that were found as Description elements.
Finally the ColorCollection type is set to ccc and the
xml_root field is called, which knows to return a ccc style XML
element to write_ccc.


	
class cdl_convert.collection.ColorCollection(input_file=None)

	Container class for ColorDecisionLists and ColorCorrectionCollections.

Collections need to store children and have access to descriptions,
input descriptions, and viewing descriptions.

Class Attributes:



	members : [ :class`ColorCollection` ]

	All instanced ColorCollection are added to this member
list. Unlike the ColorCorrection member’s dictionary,
ColorCollection do not need any unique values to exist.

This is currently only used for determining an id value when
exporting and no file_in attribute is set.








Attributes:



	all_children : (ColorCorrection, ColorDecision)

	A tuple of all the children of this collection, both
Corrections and Decisions.

	color_corrections : (ColorCorrection)

	All the ColorCorrection children are listed here.

	color_decisions : (ColorDecision)

	All the ColorDecision children are listed here.

	desc : [str]

	Since all Asc nodes which can contain a single description, can
actually contain an infinite number of descriptions, the desc
attribute is a list, allowing us to store every single description
found during parsing.

Setting desc directly will cause the value given to append to the
end of the list, but desc can also be replaced by passing it a list
or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .



	element : (<xml.etree.ElementTree.Element>)

	etree style Element representing the node. Inherited from
AscXMLBase .

	file_in : (str)

	Filepath used to create this ColorCollection .

	file_out : (str)

	Filepath this ColorCollection will be written to.

	input_desc : (str)

	Description of the color space, format and properties of the input
images. Inherited from AscColorSpaceBase .

	is_ccc : (bool)

	True if this collection currently represents .ccc.

	is_cdl : (bool)

	True if this collection currently represents .cdl.

	type : (str)

	Either ccc or cdl, represents the type of collection
this class currently will export by default.

	viewing_desc : (str)

	Viewing device, settings and environment. Inherited from
AscColorSpaceBase .

	xml : (str)

	A nicely formatted XML string representing the node. Inherited from
AscXMLBase.

	xml_root : (str)

	A nicely formatted XML, ready to write to file string representing
the node. Formatted as an XML root, it includes the xml version and
encoding tags on the first line. Inherited from
AscXMLBase.

	xmlns : (str)

	Describes the version of the ASC XML Schema that cdl_convert writes
out to files following the full schema (.ccc and .cdl)






Public Methods:



	append_child()

	Appends the given object, either a ColorCorrection or a
ColorDecision , to the respective attribute list, either
color_corrections or color_decision depending on the class
of the object passed in.

	append_children()

	Given a list, will iterate through and append each element of that
list to the correct child list, using the append_child()
method.

	build_element()

	Builds an ElementTree XML Element for this node and all nodes it
contains. element, xml, and xml_root attributes use
this to build the XML. This function is identical to calling the
element attribute. Overrides inherited placeholder method
from AscXMLBase .

Here on ColorCollection , this is a pointer to
build_element_ccc() or build_element_cdl() depending on
which type the ColorCollection is currently set to.



	build_element_ccc()

	Builds a CCC style XML tree representing this
ColorCollection instance.

	build_element_cdl()

	Builds a CDL style XML tree representing this
ColorCollection instance.

	copy_collection()

	Creates and returns an exact new instance that’s an exact copy of
the current instance. Note that references to the child instances
will be copied, but that the child instances themselves will
not be.

	merge_collections()

	Merges all members of a list containing ColorCollection
and the instance this is called on to return a new
ColorCollection that is primarily a copy of this instance,
but contains all children and description elements from the given
collections. input_desc, viewing_desc, file_in, and type
will be set to the values of the parent instance.

	parse_xml_color_corrections()

	Parses an ElementTree element to find & add all ColorCorrection.

	parse_xml_descs()

	Parses an ElementTree Element for any Description tags and appends
any text they contain to the desc. Inherited from
AscDescBase

	parse_xml_input_desc()

	Parses an ElementTree Element to find & add an InputDescription.
If none is found, input_desc will remain set to None.
Inherited from AscColorSpaceBase

	parse_xml_viewing_desc()

	Parses an ElementTree Element to find & add a ViewingDescription.
If none is found, viewing_desc will remain set to None.
Inherited from AscColorSpaceBase

	reset_members()

	Resets the class level members list.

	set_parentage()

	Sets all child ColorCorrection and ColorDecision
parent attribute to point to this instance.

	set_to_ccc()

	Switches the type of this collection to export a ccc style
xml collection by default.

	set_to_cdl()

	Switches the type of this collection to export a cdl style
xml collection by default.













ColorCorrection

The ColorCorrection class is the backbone of cdl_convert, as it
represents the basic level of the color decision list concept- the color
decision list itself. All the parse functions exist to extract the CDL metadata
and populate this class, and all the write functions exist to write files out
from this class.

Parser –> ColorCorrection –> Writer

ColorCorrection can of course be instantiated and used without a parse
function, see Script Usage for a walkthrough.


Warning

When an instance of ColorCorrection is first created, the id
provided is checked against a class level dictionary variable named
members to ensure that no two ColorCorrection share the same
id , as this is required by the specification.

If the id does match an already created id and HALT_ON_ERROR is
not set, the id assignment will go forward, appending the duplicate
number to the back of the id. So the 2nd instance of ‘sh100cc’ will
become ‘sh100cc001’.

Reset the members dictionary by either calling the reset_members method
on ColorCorrection or by reseting all cdl_convert member
lists and dictionaries with the reset_all function.

If the id given is a blank string and HALT_ON_ERROR is set to
False, id will be set to the total number of ColorCorrection
in the file, including the one currently being created. This behavior is not
accepted when changing the id after creation.




Warning

cdl_file is likely to not be a required attribute in the future.




	
class cdl_convert.correction.ColorCorrection(id, input_file=None)

	The basic class for the ASC CDL

This class contains attributes for all 10 color correction numbers needed
for an ASC CDL, as well as other metadata like shot names that typically
accompanies a CDL.

These names are standardized by the ASC and where possible the attribute
names will follow the ASC schema. Descriptions for some of these attributes
are paraphrasing the ASC CDL documentation. For more information on the ASC
CDL standard and the operations described below, you can obtain the ASC CDL
implementor-oriented documentation by sending an email to:
asc-cdl at theasc dot com

Order of operations is Slope, Offset, Power, then Saturation.

Class Attributes:



	members : {str: :class`ColorCorrection` }

	All instanced ColorCorrection are added to this member
dictionary, with their unique id being the key and the
ColorCorrection being the value.






Attributes:



	desc : [str]

	Since all Asc nodes which can contain a single description, can
actually contain an infinite number of descriptions, the desc
attribute is a list, allowing us to store every single description
found during parsing.

Setting desc directly will cause the value given to append to the
end of the list, but desc can also be replaced by passing it a list
or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .



	element : (<xml.etree.ElementTree.Element>)

	etree style Element representing the node. Inherited from
AscXMLBase .

	file_in : (str)

	Filepath used to create this ColorCorrection .

	file_out : (str)

	Filepath this ColorCorrection will be written to.

	has_sat : (bool)

	Returns True if SOP values are set

	has_sop : (bool)

	Returns True if SOP values are set

	id : (str)

	Unique XML URI to identify this CDL. Often a shot or sequence name.

Changing this value does a check against the cls.members dictionary
to ensure the new id is open. If it is, the key is changed to the
new id and the id is changed.

Note that this shadows the builtin id.



	input_desc : (str)

	Description of the color space, format and properties of the input
images. Inherited from AscColorSpaceBase .

	parent : (ColorCollection)

	The parent node that contains this node.

	sat_node : ( SatNode )

	Contains a reference to a single instance of SatNode ,
which contains the saturation value and descriptions.

	sop_node : ( SopNode )

	Contains a reference to a single instance of SopNode ,
which contains the slope, offset, power values and descriptions.

	viewing_desc : (str)

	Viewing device, settings and environment. Inherited from
AscColorSpaceBase .

	xml : (str)

	A nicely formatted XML string representing the node. Inherited from
AscXMLBase.

	xml_root : (str)

	A nicely formatted XML, ready to write to file string representing
the node. Formatted as an XML root, it includes the xml version and
encoding tags on the first line. Inherited from
AscXMLBase.






Public Methods:



	build_element()

	Builds an ElementTree XML Element for this node and all nodes it
contains. element, xml, and xml_root attributes use
this to build the XML. This function is identical to calling the
element attribute. Overrides inherited placeholder method
from AscXMLBase .

	determine_dest()

	When provided an output extension, determines the destination
filename to be written to based on file_in & id.

	parse_xml_descs()

	Parses an ElementTree Element for any Description tags and appends
any text they contain to the desc. Inherited from
AscDescBase

	parse_xml_input_desc()

	Parses an ElementTree Element to find & add an InputDescription.
If none is found, input_desc will remain set to None.
Inherited from AscColorSpaceBase

	parse_xml_viewing_desc()

	Parses an ElementTree Element to find & add a ViewingDescription.
If none is found, viewing_desc will remain set to None.
Inherited from AscColorSpaceBase

	reset_members()

	Resets the class level members list.













ColorCorrectionRef


	
class cdl_convert.decision.ColorCorrectionRef(id)

	Reference marker to a full color correction

This is a fairly basic class that simply contains a reference to a full
ColorCorrection . The id attribute must match the
id attribute in order for this class to function fully.

When writing to a format that allows empty references (like cdl),
the reference can write correctly without breaking. However, if writing to
a format that does not support reference objects at all (like ccc),
attempting to write an empty reference will result in a ValueError (if
HALT_ON_ERROR is set to True, or simply skip past the reference
entirely.

Class Attributes:



	members : {str: [:class`ColorCorrectionRef` ]}

	All instanced ColorCorrectionRef are added to this
member dictionary. Multiple ColorCorrectionRef can
share the same reference id, therefore for each reference id key,
the members dictionary stores a list of
ColorCorrectionRef instances that share that id
value.






Attributes:



	cc : (ColorCorrection)

	If the stored reference resolves to an existing
ColorCorrection, this attribute will return that node
using the resolve_reference method. This attribute is the same
as calling that method.

	parent : (ColorDecision)

	The parent ColorDecision that contains this node.

	id : (str)

	The ColorCorrection id that this reference refers to. If
HALT_ON_ERROR is set to True, will raise a ValueError
if set to a ColorCorrection id value that doesn’t
yet exist.

	xml : (str)

	A nicely formatted XML string representing the node. Inherited from
AscXMLBase.

	xml_root : (str)

	A nicely formatted XML, ready to write to file string representing
the node. Formatted as an XML root, it includes the xml version and
encoding tags on the first line. Inherited from
AscXMLBase.






Public Methods:



	build_element()

	Builds an ElementTree XML Element for this node and all nodes it
contains. element, xml, and xml_root attributes use
this to build the XML. This function is identical to calling the
element attribute. Overrides inherited placeholder method
from AscXMLBase .

	reset_members()

	Resets the class level members list.

	resolve_reference()

	Attempts to return the ColorCorrection that this
reference is supposed to refer to.

If HALT_ON_ERROR is set to True, resolving a bad reference
will raise a ValueError exception. If not set, it will simply
return None.

Otherwise (if the id attribute matches a known
ColorCorrection id, the ColorCorrection will
be returned.















ColorDecision

ColorDecision’s are normally found only within ColorCorrection but
this limitation of the ASC CDL schema is not enforced by cdl_convert.


	
class cdl_convert.decision.ColorDecision(color_correct=None, media=None)

	Contains a media ref and a ColorCorrection or reference to CC.

This class is a simple container to link a ColorCorrection (or
ColorCorrectionRef ) with a MediaRef . The
MediaRef is optional, the ColorCorrection is not. The
ColorCorrection does not need to be provided at initialization time
however, as ColorDecision provides an XML element parser
for deriving one.

The primary purpose of a ColorDecision node is to associate a
ColorCorrection node with one or more items of Media Reference.

Along with Media Reference, a ColorDecision can contain the normal
type of input, viewer and description metadata.

Additional, it is the only node that can contain ColorCorrectionRef
nodes, which link the same ColorCorrection to many different
ColorDecisions (and thus, many different items of media reference)

An example containing a ColorCorrection node:

<ColorDecision>
    <MediaRef ref="http://www.theasc.com/foasc-logo2.png"/>
    <ColorCorrection id="ascpromo">
        <SOPNode>
            <Description>get me outta here</Description>
            <Slope>0.9 1.1 1.0</Slope>
            <Offset>0.1 -0.01 0.0</Offset>
            <Power>1.0 0.99 1.0</Power>
        </SOPNode>
    </ColorCorrection>
</ColorDecision>





But it can also contain just a reference:

<ColorDecision>
    <MediaRef ref="best/project/ever/jim.0100.dpx"/>
    <ColorCorrectionRef ref="xf45.x628"/>
</ColorDecision>





Class Attributes:



	members : {str: [ :class`ColorDecision` ]}

	All instanced ColorDecision are added to this
member dictionary. The key is the id or reference id of the
contained ColorCorrection or
ColorCorrectionRef Multiple ColorDecision
can , therefore for each reference id key,
the members dictionary stores a list of
ColorDecision instances that share that id
value.






Attributes:



	cc : (ColorCorrection , ColorCorrectionRef)

	Returns the contained ColorCorrection, even if it’s a reference.

	desc : [str]

	Since all Asc nodes which can contain a single description, can
actually contain an infinite number of descriptions, the desc
attribute is a list, allowing us to store every single description
found during parsing.

Setting desc directly will cause the value given to append to the
end of the list, but desc can also be replaced by passing it a list
or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .



	element : (<xml.etree.ElementTree.Element>)

	etree style Element representing the node. Inherited from
AscXMLBase .

	input_desc : (str)

	Description of the color space, format and properties of the input
images. Inherited from AscColorSpaceBase .

	is_ref : (bool)

	True if contains a ColorCorrectionRef object instead
of a ColorCorrection

	media_ref : (MediaRef)

	Returns the contained MediaRef or None.

	parent : (ColorDecisionList)

	The parent node that contains this node.

	set_parentage()

	Sets child ColorCorrection (or
ColorCorrectionRef) and MediaRef (if
present) parent attribute to point to this instance.

	viewing_desc : (str)

	Viewing device, settings and environment. Inherited from
AscColorSpaceBase .

	xml : (str)

	A nicely formatted XML string representing the node. Inherited from
AscXMLBase.

	xml_root : (str)

	A nicely formatted XML, ready to write to file string representing
the node. Formatted as an XML root, it includes the xml version and
encoding tags on the first line. Inherited from
AscXMLBase.






Public Methods:



	build_element()

	Builds an ElementTree XML Element for this node and all nodes it
contains. element, xml, and xml_root attributes use
this to build the XML. This function is identical to calling the
element attribute. Overrides inherited placeholder method
from AscXMLBase .

	parse_xml_color_correction()

	Parses a ColorDecision ElementTree Element for a ColorCorrection
Element or a ColorCorrectionRef Element.

	parse_xml_color_decision()

	Parses a ColorDecision ElementTree Element for metadata,
then calls parsers for ColorCorrection and MediaRef.

	parse_xml_descs()

	Parses an ElementTree Element for any Description tags and appends
any text they contain to the desc. Inherited from
AscDescBase

	parse_xml_input_desc()

	Parses an ElementTree Element to find & add an InputDescription.
If none is found, input_desc will remain set to None.
Inherited from AscColorSpaceBase

	parse_xml_media_ref()

	Parses an ColorDecision Element for a MediaRef Element.

	parse_xml_viewing_desc()

	Parses an ElementTree Element to find & add a ViewingDescription.
If none is found, viewing_desc will remain set to None.
Inherited from AscColorSpaceBase

	reset_members()

	Resets the class level members list.













ColorNodeBase

This class only exists to be subclassed by SatNode and SopNode
and should not be used directly.


	
class cdl_convert.base.ColorNodeBase

	Base class for SOP and SAT nodes.

This class is meant only to be inherited by SopNode and
SatNode and should not be used outside of those classes.

It inherits from both AscDescBase and AscXMLBase giving
the child classes both desc and xml related functionality.

This class is also home to a private function which helps SopNode
and SatNode perform type and value checks on incoming values.

Attributes:



	desc : [str]

	Since all Asc nodes which can contain a single description, can
actually contain an infinite number of descriptions, the desc
attribute is a list, allowing us to store every single description
found during parsing.

Setting desc directly will cause the value given to append to the
end of the list, but desc can also be replaced by passing it a list
or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .



	element : (<xml.etree.ElementTree.Element>)

	etree style Element representing the node. Inherited from
AscXMLBase .

	xml : (str)

	A nicely formatted XML string representing the node. Inherited from
AscXMLBase.

	xml_root : (str)

	A nicely formatted XML, ready to write to file string representing
the node. Formatted as an XML root, it includes the xml version and
encoding tags on the first line. Inherited from
AscXMLBase.






Public Methods:



	build_element()

	Builds an ElementTree XML Element for this node and all nodes it
contains. element, xml, and xml_root attributes use
this to build the XML. This function is identical to calling the
element attribute. Overrides inherited placeholder method
from AscXMLBase .

	parse_xml_descs()

	Parses an ElementTree Element for any Description tags and appends
any text they contain to the desc. Inherited from
AscDescBase













MediaRef

Media Ref’s are normally found only inside of ColorDecision, which
itself is found only inside of the ColorDecisionList collection. This
isn’t a restriction that cdl_convert explicitly enforces, but the parse
and write functions will only be creating and writing found MediaRef
objects following the rules.

Where possible when writing filetypes that don’t support MediaRef,
the information kept in MediaRef will be converted into description
field metadata and preserved in that way.


Note

The above metadata preservation is not yet implemented.



MediaRef is meant to provide a convenient interface for managing
and interpreting data stored in CDLs. You can change a broken absolute link
directory to a relative link without touching the filename, or retrieve a full
list of image sequences contained within a referenced directory.


	
class cdl_convert.decision.MediaRef(ref_uri, parent=None)

	A directory of files or a single file used for grade reference

MediaRef is a container for an image path that should be
referenced in regards to the color correction being performed. What that
reference means must be further clarified, either through communication or
Description fields.

Requires a ref_uri and an optional parent to instantiate.

An XML URI is usually a filepath to a directory or file, sometimes
proceeded by a protocol (such as http://). Note that many of the
functions and methods described below do not function properly when
given a URI with a protocol in front.

The parent of a MediaRef should typically be a
ColorDecision , and in fact the CDL specification states that
no other container is allowed to contain a MediaRef. That
restriction is not enforced in the python API.

Class Attributes:



	members : {str: [ MediaRef ]}

	All instances of MediaRef are added to this class level
members dictionary, with the key being the full reference URI.
Since it’s possible that multiple MediaRef point to the
same reference URI, the value returned is a list of
MediaRef that all have a value of that same URI.

When you change a single MediaRef ref attribute, it
removes itself from the old key’s list, and adds itself to the
new key’s list. The old key is removed from the dictionary if this
MediaRef was the last member.








Attributes:



	directory : (str)

	The directory portion of the URI, without the protocol or filename.

	element : (<xml.etree.ElementTree.Element>)

	etree style Element representing the node. Inherited from
AscXMLBase .

	exists : (bool)

	True if the path is present in the file system.

	filename : (str)

	The filename portion of the URI, without any protocol or directory.

	is_abs : (bool)

	True if directory is an absolute reference.

	is_dir : (bool)

	True if path points to a directory with no filename portion.

	is_seq : (bool)

	True if path points to an image sequence or a directory of
image sequences. Image sequences are determined by files ending
in a dot or underscore, followed by an integer, followed by the
file extension. If the filename reference given already has pound
padding or %d indication padding, this will also return true.


	Valid image sequences:

	
	TCM100X_20140215.0001.exr

	Bobs Big_Score_2.jpg

	2383-279873.67267_32t7634.63278623781638218763.exr

	104fl.x034.######.dpx

	104fl.x034_%06d.dpx









	parent : (ColorDecision)

	The parent that contains this MediaRef object. This should
normally be a ColorDecision , but that is not enforced.

	path : (str)

	The directory joined with the filename via os.path.join(), if
there is no filename, path is identical to directory. If there
is no protocol, path is identicial to ref.

	protocol : (str)

	The URI protocol section of the URI, if any. This is the section
that proceeds the ‘://’ of any URI. If there is no ‘://’ in the
given URI, this is empty.

	ref : (str)

	The full URI reference which includes the protocol, directory and
filename. If there is no protocol and no filename, ref is
identical to directory.

	seq : (str)

	If is_seq finds that the filename or directory refers to one or
more image sequences, seq will return the first found sequence
in  the form of filename.####.ext (or filename_####.ext if the
sequence has an _ in front of the frame numbers).
Note that there may be more than one image sequence if ref
points to a directory. To get a list of all image sequences
found, use seqs.

Only if a reference was given to us already in the form of %d
padding will seq and seqs return a sequence filename with
%d padding.



	seqs : [str]

	Returns all found sequences in a list. If ref points to a
filename, this list will only contain one sequence. If ref
points to a directory, all sequences found in that directory will
be in this list.

	xml : (str)

	A nicely formatted XML string representing the node. Inherited from
AscXMLBase.

	xml_root : (str)

	A nicely formatted XML, ready to write to file string representing
the node. Formatted as an XML root, it includes the xml version and
encoding tags on the first line. Inherited from
AscXMLBase.






Public Methods:



	build_element()

	Builds an ElementTree XML Element for this node and all nodes it
contains. element, xml, and xml_root attributes use
this to build the XML. This function is identical to calling the
element attribute. Overrides inherited placeholder method
from AscXMLBase .

	reset_members()

	Resets the class level members list.













SatNode


Note

This class is meant only to be created by a ColorCorrection ,
and thus has the required arg of parent when instantiating it.




	
class cdl_convert.correction.SatNode(parent)

	Color node that contains saturation data.

Class Attributes:



	element_names : [str]

	Contains a list of XML Elements that refer to this class for use
in parsing XML files.






Attributes:



	desc : [str]

	Since all Asc nodes which can contain a single description, can
actually contain an infinite number of descriptions, the desc
attribute is a list, allowing us to store every single description
found during parsing.

Setting desc directly will cause the value given to append to the
end of the list, but desc can also be replaced by passing it a list
or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .



	element : (<xml.etree.ElementTree.Element>)

	etree style Element representing the node. Inherited from
AscXMLBase .

	parent : ( ColorCorrection )

	The parent ColorCorrection instance that created this
instance.

	sat : (Decimal)

	The saturation value (to be applied with Rec 709 coefficients) is
stored here. Saturation is the last operation to be applied when
applying a CDL.

sat can be set with a Decimal, float, int or numeric string.



	xml : (str)

	A nicely formatted XML string representing the node. Inherited from
AscXMLBase.

	xml_root : (str)

	A nicely formatted XML, ready to write to file string representing
the node. Formatted as an XML root, it includes the xml version and
encoding tags on the first line. Inherited from
AscXMLBase.






Public Methods:



	build_element()

	Builds an ElementTree XML Element for this node and all nodes it
contains. element, xml, and xml_root attributes use
this to build the XML. This function is identical to calling the
element attribute. Overrides inherited placeholder method
from AscXMLBase .

	parse_xml_descs()

	Parses an ElementTree Element for any Description tags and appends
any text they contain to the desc. Inherited from
AscDescBase













SopNode


Note

This class is meant only to be created by a ColorCorrection ,
and thus has the required arg of parent when instantiating it.




Warning

Setting any of the sop node values with a single value as in
offset = 5.4 will cause that value to be copied over all 3 colors,
resulting in [5.4, 5.4, 5.4].




	
class cdl_convert.correction.SopNode(parent)

	Color node that contains slope, offset and power data.

Slope, offset and saturation are stored internally as lists, but always
returned as tuples to prevent index assignment from being successful. This
protects the user from inadvertently setting a single value in the list
to be a non-valid value, which might result in values not being Decimals or
even numbers at all.

Class Attributes:



	element_names : [str]

	Contains a list of XML Elements that refer to this class for use
in parsing XML files.






Attributes:



	desc : [str]

	Since all Asc nodes which can contain a single description, can
actually contain an infinite number of descriptions, the desc
attribute is a list, allowing us to store every single description
found during parsing.

Setting desc directly will cause the value given to append to the
end of the list, but desc can also be replaced by passing it a list
or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .



	element : (<xml.etree.ElementTree.Element>)

	etree style Element representing the node. Inherited from
AscXMLBase .

	parent : ( ColorCorrection )

	The parent ColorCorrection instance that created this
instance.

	slope : (Decimal, Decimal, Decimal)

	An rgb tuple representing the slope, which changes the slope of the
input without shifting the black level established by the offset.
These values must be positive. If you set this attribute with a
single value, it will be copied over all 3 colors. Any single value
given can be a Decimal, float, int or numeric string.

default: (Decimal(‘1.0’), Decimal(‘1.0’), Decimal(‘1.0’))



	offset : (Decimal, Decimal, Decimal)

	An rgb tuple representing the offset, which raises or lowers the
input brightness while holding the slope constant. If you set this
attribute with a single value, it will be copied over all 3 colors.
Any single value given can be a Decimal, float, int or numeric
string.

default: (Decimal(‘0.0’), Decimal(‘0.0’), Decimal(‘0.0’))



	power : (Decimal, Decimal, Decimal)

	An rgb tuple representing the power, which is the only function
that changes the response curve of the function. Note that this has
the opposite response to adjustments than a traditional gamma
operator. These values must be positive. If you set this attribute
with a single value, it will be copied over all 3 colors. Any
single value given can be a Decimal, float, int or numeric string.

default: (Decimal(‘1.0’), Decimal(‘1.0’), Decimal(‘1.0’))



	xml : (str)

	A nicely formatted XML string representing the node. Inherited from
AscXMLBase.

	xml_root : (str)

	A nicely formatted XML, ready to write to file string representing
the node. Formatted as an XML root, it includes the xml version and
encoding tags on the first line. Inherited from
AscXMLBase.






Public Methods:



	build_element()

	Builds an ElementTree XML Element for this node and all nodes it
contains. element, xml, and xml_root attributes use
this to build the XML. This function is identical to calling the
element attribute. Overrides inherited placeholder method
from AscXMLBase .

	parse_xml_descs()

	Parses an ElementTree Element for any Description tags and appends
any text they contain to the desc. Inherited from
AscDescBase















General Functions


Reset All

Resets all the class level lists and dictionaries of cdl_convert. Calling this
is the same as calling each individual reset_members method.


	
cdl_convert.reset_all()

	Resets all class level member lists and dictionaries








Sanity Check


	
cdl_convert.utils.sanity_check(colcor)

	Checks values on ColorCorrection for sanity.


	Args:

	
	colcor : (ColorCorrection)

	The ColorCorrection to check for sane values.





	Returns:

	
	(bool)

	Returns True if all values are sane.





	Raises:

	N/A



Will print a warning to stdout if any values exceed normal limits.
Normal limits are defined as:


	For Slope, Power and Saturation:

	Any value over 3 or under 0.1

	For Offset:

	Any value over 1 or under -1



Note that depending on the desired look for a shot or sequence, it’s
possible that a single ColorCorrection element might have very odd
looking values and still achieve a correct look.








To Decimal

This is the function we use to convert ints, floats and strings to Decimal
objects. We do NOT attempt to use maximum accuracy on floats passed in,
as that results in extremely long values more often than not. Better to just
truncate the float with a string conversion, than attempt to perfectly
represent with a Decimal.


	
cdl_convert.utils.to_decimal(value, name='Value')

	Converts an incoming value to Decimal in the best way


	Args:

	
	value : (Decimal|str|float|int)

	Any numeric value to be checked.

	name=’Value’ : (str)

	The type of value being checked: slope, offset, etc.





	Returns:

	
	(Decimal)

	If value passes all tests, returns value as Decimal.





	Raises:

	
	TypeError:

	If value given is not a number.

	ValueError:

	If given a value that isn’t an allowed type.
















Parse Functions

These functions can either return a ColorCorrection , or a
ColorCollection , depending on if they are from a container format.


Note

Use the parse_file function to parse any input file correctly, without
worrying about matching the file extension by hand.




Parse ale


	
cdl_convert.parse.parse_ale(input_file)

	Parses an Avid Log Exchange (ALE) file for CDLs


	Args:

	
	input_file : (str)

	The filepath to the ALE EDL





	Returns:

	
	(ColorCollection)

	A collection that contains all found ColorCorrections





	Raises:

	N/A



An ALE file is traditionally gathered during a telecine transfer using
standard ASCII characters. Each line theoretically represents a single
clip/take/shot.

Each field of data is tab delineated. We’ll be searching for the ASC_SOP,
ASC_SAT fields, alone with the standard Scan Filename fields.

The Data line indicates that all the following lines are comprised of
shot information.








Parse cc


	
cdl_convert.parse.parse_cc(input_file)

	Parses a .cc file for ASC CDL information


	Args:

	
	input_file : (str|<ElementTree.Element>)

	The filepath to the CC or the ElementTree.Element object.





	Returns:

	
	(ColorCorrection)

	The ColorCorrection described within.





	Raises:

	
	ValueError:

	Bad XML formatting can raise ValueError is missing required
elements.







A CC file is really only a single element of a larger CDL or CCC XML file,
but this element has become a popular way of passing around single shot
CDLs, rather than the much bulkier CDL file.

A sample CC XML file has text like:

<ColorCorrection id="cc03340">
    <SOPNode>
        <Description>change +1 red, contrast boost</Description>
        <Slope>1.2 1.3 1.4</Slope>
        <Offset>0.3 0.0 0.0</Offset>
        <Power>1.0 1.0 1.0</Power>
    </SOPNode>
    <SatNode>
        <Saturation>1.2</Saturation>
    </SatNode>
</ColorCorrection>





Additional elements can include multiple descriptions at every level,
a description of the input colorspace, and a description of the viewing
colorspace and equipment.








Parse ccc


	
cdl_convert.parse.parse_ccc(input_file)

	Parses a .ccc file into a ColorCollection with type ‘ccc’


	Args:

	
	input_file : (str)

	The filepath to the CCC.





	Returns:

	
	(ColorCollection)

	A collection of all the found ColorCorrection as well
as any metadata within the XML





	Raises:

	
	ValueError:

	Bad XML formatting can raise ValueError is missing required
elements.







A ColorCorrectionCollection is just that- a collection of ColorCorrection
elements. It does not contain any ColorDecision or MediaRef elements,
but is free to contain as many Description elements as someone adds in.

It should also contain an InputDescription element, describing the color
space and other properties of the incoming image, as well as a
ViewingDescription which describes the viewing environment as well
as any relevant hardware devices used to view or grade.








Parse cdl


	
cdl_convert.parse.parse_cdl(input_file)

	Parses a .cdl file into a ColorCollection with type ‘cdl’


	Args:

	
	input_file : (str)

	The filepath to the CDL.





	Returns:

	
	(ColorCollection)

	A collection of all the found ColorDecisions as well
as any metadata within the XML





	Raises:

	
	ValueError:

	Bad XML formatting can raise ValueError is missing required
elements.







A ColorDecicionList is just that- a list of ColorDecision elements. It does
not directly contain any ColorCorrections or Media Ref, only
ColorDecisions, but is free to contain as many Description elements as
someone adds in.

It should also contain an InputDescription element, describing the color
space and other properties of the incoming image, as well as a
ViewingDescription which describes the viewing environment as well
as any relevant hardware devices used to view or grade.








Parse cmx


	
cdl_convert.parse.parse_cmx(input_file)

	Parses a CMX EDL file for ASC CDL information.


	Args:

	
	input_file : (str)

	The filepath to the CMX EDL





	Returns:

	
	(ColorCollection)

	A collection that contains all the ColorCorrection objects found
within this EDL





	Raises:

	N/A



001  DS0010.bg1 V     C     00:08:07:23 00:08:16:10 01:00:00:00 01:00:08:11
*ASC_SOP (1.45 1.22 1.15)(-0.14 -0.11 -0.11)(1.00 1.00 1.00)
*ASC_SAT 0.773000








Parse file

Passes on the file to the correct parser.


	
cdl_convert.parse.parse_file(filepath, filetype=None)

	Determines & uses the correct parser to use on a CDL file


	Args:

	
	filepath : (str)

	The filepath to the file. Must exist.

	filetype=None : (str)

	A file extension corresponding to the CDL type to convert from.
If not provided, we’ll derive it from the filepath.

Should not include a ‘.’







	Raises:

	N/A

	Returns:

	
	ColorCorrection or ColorCollection

	Depending on the type of input file, this function will
either return a single ColorCorrection or a full
ColorCollection , containing one or more
ColorCorrection or ColorDecision














Parse flex


	
cdl_convert.parse.parse_flex(input_file)

	Parses a DaVinci FLEx telecine EDL for ASC CDL information.


	Args:

	
	input_file : (str)

	The filepath to the FLEx EDL





	Returns:

	
	(ColorCollection)

	A collection that contains all the ColorCorrection objects found
within this EDL





	Raises:

	N/A



The DaVinci FLEx EDL is an odd duck, it’s information conveyed via an
extremely strict line & character addressing system.

Each line must begin with a line number header that indicated what type
of information the line contains, with line number 100 indicating the
start of a new shot/take. Lines 000-099 contain session information.

Within each line, important information is constricted to a certain
range of characters, rather than space or comma separated like in an
ALE EDL.

Some line numbers we care about, and the character indexes:









	Line #
	Line Name
	Char Index
	Data Type




	010
	Project Title
	10-79
	Title


	100
	Slate Info
	10-17
	Scene


	
	
	24-31
	Take ID


	
	
	42-49
	Camera Reel ID


	701
	ASC SOP
	(This entry can be safely space separated)


	702
	ASC SAT
	(This entry can be safely space separated)





We’ll try and default to using the Slate information to derive the
resultant filename, however that information is optional. If no
slate information is found, we’ll iterate up at the end of the title.
If no title information is found, we’ll have to iterate up on the
actual input filename, which is far from ideal.








Parse Rhythm & Hues cdl

Rhythm & Hues’ implementation of the cdl format is based on a very early spec,
and as such lacks the all metadata. It’s extremely unlikely that you’ll run
into this format in the wild.


	
cdl_convert.parse.parse_rnh_cdl(input_file)

	Parses a space separated .cdl file for ASC CDL information.


	Args:

	
	input_file : (str)

	The filepath to the CDL





	Returns:

	
	(ColorCorrection)

	The single ColorCorrection object retrieved from the beta CDL





	Raises:

	N/A



A space separated cdl file is an internal Rhythm & Hues format used by
the Rhythm & Hues for displaying shot level and sequence level within
their internally developed playback software.

The file is a simple file consisting of one line. That line has 10, space
separated elements that correspond to the ten ASC CDL elements in order of
operations.

SlopeR SlopeG SlopeB OffsetR OffsetG OffsetB PowerR PowerG PowerB Sat










Write Functions

Each of these functions takes an ColorCorrection as an arg, then places
as many attributes of the ColorCorrection that the format supports
into a properly formatted string or XML Tree, then writes that file.


Write cc


	
cdl_convert.write.write_cc(cdl)

	Writes the ColorCorrection to a .cc file








Write ccc


	
cdl_convert.write.write_ccc(cdl)

	Writes the ColorCollection to a .ccc file








Write cdl


	
cdl_convert.write.write_cdl(cdl)

	Writes the ColorCollection to a .cdl file








Write Rhythm & Hues cdl

This writes a very sparse cdl format that is based on a very early spec of the
cdl implementation. It lacks all metadata. Unless you work at Rhythm & Hues,
you probably don’t want to write a cdl that uses this format.


	
cdl_convert.write.write_rnh_cdl(cdl)

	Writes the ColorCorrection to a space separated .cdl file
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