
cdl_convert Documentation
Release 0.9.1

Sean Wallitsch

April 09, 2016

Contents

1 Project Info 1

2 Introduction 3

3 Changelog 5

4 Table of Contents 9
4.1 Script Usage . 9
4.2 ColorCorrection Usage . 10
4.3 Color Collections . 15
4.4 Installation . 20
4.5 Changelog . 20
4.6 Support . 24
4.7 Frequently Asked Questions . 25
4.8 Contributing . 25
4.9 Licenses . 27
4.10 API Reference . 29

5 Indices and tables 49

i

ii

CHAPTER 1

Project Info

• Name: cdl_convert

• Version: 0.9.1

• Author/Maintainer: Sean Wallitsch

• Email: shidarin@alphamatte.com

• License: MIT

• Status: Development

• Docs: http://cdl-convert.readthedocs.org/

• GitHub: https://github.com/shidarin/cdl_convert

• PyPI: https://pypi.python.org/pypi/cdl_convert

• Python Versions: 2.6-3.4, PyPy

1

mailto:shidarin@alphamatte.com
http://cdl-convert.readthedocs.org/
https://github.com/shidarin/cdl_convert
https://pypi.python.org/pypi/cdl_convert

cdl_convert Documentation, Release 0.9.1

2 Chapter 1. Project Info

CHAPTER 2

Introduction

cdl_convert converts between common ASC CDL formats. The American Society of Cinematographers Color
Decision List (ASC CDL, or CDL for short) is a schema to simplify the process of interchanging color data between
various programs and facilities.

The ASC has defined schemas for including the 10 basic numbers in 5 different formats:

• Avid Log Exchange (ALE)

• Film Log EDL Exchange (FLEx)

• CMX EDL

• XML Color Correction (cc)

• XML Color Correction Collection (ccc)

• XML Color Decision List (cdl)

Unofficial Formats:

• OCIOCDLTransform, a Foundry Nuke node

• Space separated CDL, a Rhythm & Hues internal cdl format

It is the purpose of cdl_convert to convert ASC CDL information between these basic formats to further facilitate
the ease of exchange of color data within the Film and TV industries.

cdl_convert supports parsing ALE, FLEx, CC, CCC, CDL and RCDL. We can write out CC, CCC, CDL and
RCDL.

cdl_convert is not associated with the American Society of Cinematographers

3

http://en.wikipedia.org/wiki/ASC_CDL
http://www.theasc.com/
http://www.thefoundry.co.uk/nuke/

cdl_convert Documentation, Release 0.9.1

4 Chapter 2. Introduction

CHAPTER 3

Changelog

New in version 0.9.1:

• Fixed a bug where ALE’s with blank lines would not convert correctly.

New in version 0.9:

• Added ability to parse CMX EDLs

• Fixed a script bug where a collection format containing color decisions will not have those color decisions
exported as individual color corrections.

• Fixed a bug where we weren’t reading line endings correctly in certain situations.

• Added a cdl_convert.py stub file to the package root level, which will allow running of the cdl_convert
script without installation. Due to relative imports in the python code, it was no longer possible to call
cdl_convert/cdl_convert.py directly.

• The script, when run directly from cdl_convert.py, will now write errors to stderror correctly, and exit with a
status of 1.

New in version 0.8:

• Added –single flag. When provided with an output collection format, each color correction in the input will be
exported to it’s own collection.

• Giving a ColorCorrection a non-duplicate ID now works unless the --halt flag is given. This means
that incoming collections that contain duplicate IDs will not fail out.

New in version 0.7.1:

• Fixed bug where ALE’s without ‘Scan Filename’ fields could not parse correctly.

New in version 0.7:

The biggest change in 0.7 is the addition of collection format support. .ccc, Color Correction Collections, can now
be parsed and written. .cdl, Color Decision Lists, can now be parsed and written. .ale and .flex files now return
a collection.

• New script flags:

– Adds --check flag to script, which checks all parsed ColorCorrects for sane values, and prints
warnings to shell

– Adds -d, --destination flag to the script, which allows user to specify the output directory
converted files will be written to.

– Adds --no-ouput flag to the script, which goes through the entire conversion process but doesn’t
actually write anything to disk. Useful for troubleshooting, especially when combined with --check

5

cdl_convert Documentation, Release 0.9.1

– Adds --halt flag to the script, which halts on errors that can be resolved safely (such as negative
slope or power values)

• Renames ColorCollectionBase to ColorCollection , since it will be used directly by both ccc and
cdl.

• Adds parse_ccc which returns a ColorCollection .

• Adds write_ccc which writes a ColorCollection as a ccc file.

• Adds parse_cdl which returns a ColorCollection .

• Adds write_cdl which returns a ColorCollection as a cdl file.

• ColorCollection is now a fully functional container class, with many attributes and methods.

• Added ColorDecision , which stores either a ColorCorrection or ColorCorrectionRef , and an
optional MediaRef

• Added ColorCorrectionRef , which stores a reference to a ColorCorrection

• Added parent attribute to ColorCorrection .

• Calling sop_node or sat_node on a ColorCorrection before attempting to set a SOP or Sat power
now works.

• ColorCorrection cdl_file init argument renamed to input_file, which is now optional and able to
be set after init.

• parse_cc and parse_rnh_cdl now only yield a single ColorCorrection , not a single member list.

• Added dev-requirements.txt (contains mock)

• All determine_dest methods now take a second directory argument, which determines the output
directory.

• Adds sanity_check function which prints values which might be unusual to stdout.

• parse_cdl and write_cdl renamed to parse_rnh_cdl and write_rnh_cdl respectively.

• member_reset methods:

– ColorCorrection now has a reset_members method, which resets the class level member’s
dictionary.

– MediaRef also has a reset_members method, as does ColorCollection

– reset_all function calls all of the above reset_members methods at once.

• Renamed cdl_file argument:

– parse_cc cdl_file arg renamed to input_file and now accepts a either a raw string or an
ElementTree Element as input_file.

– parse_rnh_cdl cdl_file arg renamed to input_file.

– parse_ale edl_file arg renamed to input_file.

– parse_flex edl_file arg renamed to input_file.

• Python Structure Refactoring

– Moved HALT_ON_ERROR into the config module, which should now be referenced and set by
importing the entire config module, and referencing or setting config.HALT_ON_ERROR

– Script functionality remains in cdl_convert.cdl_convert, but everything else has been moved
out.

6 Chapter 3. Changelog

cdl_convert Documentation, Release 0.9.1

– AscColorSpaceBase , AscDescBase , AscXMLBase and ColorNodeBase now live under
cdl_convert.base

– ColorCollection now lives in cdl_convert.collection

– ColorCorrection , SatNode and SopNode now live under cdl_convert.correction

– ColorDecision , ColorCorrectionRef and MediaRef now live under
cdl_convert.decision

– All parse functions now live under cdl_convert.parse

– All write functions now live under cdl_convert.write

– sanity_check now live under cdl_convert.utils

– reset_all now lives under the main module

7

cdl_convert Documentation, Release 0.9.1

8 Chapter 3. Changelog

CHAPTER 4

Table of Contents

4.1 Script Usage

Most likely you’ll use cdl_convert as a script, instead of a python package itself. Indeed, even the name is
formatted more like a script (with an underscore) than the more common all lowercase of python modules.

If you just want to convert to a .cc XML file, the only required argument is an input file, like so:

$ cdl_convert ./di_v001.flex

You can override the default .cc output, or provide multiple outputs with the -o flag.

$ cdl_convert ./di_v001.flex -o cc,cdl

Sometimes it might be necessary to disable cdl_convert’s auto-detection of the input file format. This can be done
with the -i flag.

$ cdl_convert ./ca102_x34.cdl -i rcdl

Note: You should not normally need to do this, but it is possible especially since there are multiple formats sharing
the same file extension. In this case, .cdl could have indicated either a space separated cdl (an rcdl), or an XML
cdl. cdl_convert does it’s best to try and guess which one the file is, but if you’re running into trouble, it might
help to indicate to cdl_convert what the input file type is.

By default, converted files will be written to the ‘./converted’ directory, but a custom destination directory can easily
be specified with the -d flag.

$ cdl_convert ./hk416_210.ccc -d /hello_kitty/luts/cdls/

Warning: It’s possible to pass a ‘.’ to the -d flag, causing converted files to be written to the same directory as
the directory you’re calling cdl_convert from, and often that ends up being the same directory as the file you’re
converting from. If one isn’t careful, there’s a possibility you could overwrite the original files.

When converting large batches of color corrections, it can be helpful to know if there’s anything odd about any of
them. Using the --check flag will cause any potentially invalid numbers to be flagged and printed to the shell.

For Slope, Power and Saturation, any values below 0.1 or above 3.0 will flag. For Offset, any values below -1.0
or above 1.0 will flag.

9

cdl_convert Documentation, Release 0.9.1

$ cdl_convert ./di_v001.flex
The ColorCorrection "a347.x700" was given a Slope value of "0.978", which
might be incorrect.
The ColorCorrection "a400.x050" was given a Saturation value of "3.1",
which might be incorrect.

This is especially useful when combined with the --no-output flag, which will enable a dry run mode and allow
you to spot odd values before running.

Full help is available using the standard --help command:

$ cdl_convert --help
usage: cdl_convert [-h] [-i INPUT] [-o OUTPUT] [-d DESTINATION] [--halt]

[--no-output] [--check] [--single]
input_file

positional arguments:
input_file the file to be converted

optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT

specify the filetype to convert from. Use when
CDLConvert cannot determine the filetype
automatically. Supported input formats are: ['flex',
'cc', 'ale', 'cdl', 'rcdl', 'ccc']

-o OUTPUT, --output OUTPUT
specify the filetype to convert to, comma separated
lists are accepted. Defaults to a .cc XML. Supported
output formats are: ['cc', 'cdl', 'ccc', 'rcdl']

-d DESTINATION, --destination DESTINATION
specify an output directory to save converted files
to. If not provided will default to ./converted/

--halt turns off exception handling default behavior. Turn
this on if you want the conversion process to fail and
not continue,rather than relying on default behavior
for bad values. Examples are clipping negative values
to 0.0 for Slope, Power and Saturation, and
automatically generating a new id for a ColorCorrect
if no or a bad id is given.

--no-output parses all incoming files but no files will be
written. Use this in conjunction with '--halt' and '--
check' to try and track down any oddities observed in
the CDLs.

--check checks all ColorCorrects that were parsed for odd
values. Odd values are any values over 3 or under 0.1
for Slope, Power and Saturation. For offset, any value
over 1 and under -1 is flagged. Note that depending on
the look, these still might be correct values.

--single only write a single color decision per file when given
collection formats. This means that a single input CDL
will export multipleCDL files, one per color decision.

4.2 ColorCorrection Usage

Once installed with pip, importing cdl_convert works like importing any other python module.

10 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

>>> import cdl_convert as cdl

4.2.1 Creating ColorCorrection

Once imported, you have two choices. You can either instantiate a new, blank cdl directly, or you can parse a file on
disk.

A ColorCorrection is created with the 10 required values (RGB values for slope, offset and power, and a single
value for saturation) set to their defaults.

>>> cc.slope
(Decimal('1.0'), Decimal('1.0'), Decimal('1.0'))
>>> cc.offset
(Decimal('0.0'), Decimal('0.0'), Decimal('0.0'))
>>> cc.power
(Decimal('1.0'), Decimal('1.0'), Decimal('1.0'))
>>> cc.sat
Decimal('1.0')

Note: slope, offset, power and sat are convenience properties that actually reference two child objects
of ColorCorrection , a SopNode and a SatNode . Calling them via cc.power is the same as calling
cc.sop_node.power.

The ColorCorrection class inherits from both the AscColorSpaceBase class, and the AscDescBase
class, giving it the additional attributes of input_desc (to describe the colorspace entering the correction,
viewing_desc (to describe the colorspace conversions that must occur for viewing, and what type of monitor
was used), and desc (which can be an infinitely long list of shot descriptions)

Direct Creation

If you want to create a new instance of ColorCorrection, you have to provide an id, for the unique cdl identifier
and an optional source filename to input_file.

>>> cc = cdl.ColorCorrection(id='cc1', input_file='./myfirstcdl.cc')

Warning: When an instance of ColorCorrection is first created, the id provided is checked against a class
level dictionary variable named members to ensure that no two ColorCorrection share the same id , as this
is required by the specification.
Giving duplicate id will result in a number being appended to the back, unless HALT_ON_ERROR is set, in which
case it will fail.
Reset the members list by calling the reset_members method of ColorCorrection or reset all class mem-
ber list and dictionaries with cdl_convert.reset_all.

Parsing a single correction CDL file

Instead of creating a blank CDL object, you can parse a cc file from disk, and it will return a single
ColorCorrection matching the correction found in the file. Formats that contain multiple corrections will re-
turn a ColorCollection , which contains child ColorCorrection .

If you don’t want to worry about matching the filetype to a parser, just use the generic parse_file function.

4.2. ColorCorrection Usage 11

cdl_convert Documentation, Release 0.9.1

>>> cdl.parse_file('./myfirstcdl.cc')
<cdl_convert.correction.ColorCorrection object at 0x1004a5590>
>>> collection = cdl.parse_file('/myfirstedl.ccc')
<cdl_convert.collection.ColorCollection object at 0x100633b40>,
>>> collection.color_corrections
[

<cdl_convert.correction.ColorCorrection object at 0x100633b90>,
<cdl_convert.correction.ColorCorrection object at 0x100633c50>,
<cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
<cdl_convert.correction.ColorCorrection object at 0x100633b50>,
<cdl_convert.correction.ColorCorrection object at 0x100633d90>,
<cdl_convert.correction.ColorCorrection object at 0x100633b10>,
<cdl_convert.correction.ColorCorrection object at 0x100633ad0>,

]

Once you have a ColorCorrection from a parser, you’ll find that whatever values it found on the file now exist
on the instance of ColorCorrection.

>>> cc = cdl.parse_cc('./xf/015.cc')
>>> cc.slope
(Decimal('1.02401'), Decimal('1.00804'), Decimal('0.89562'))
>>> cc.offset
(Decimal('-0.00864'), Decimal('-0.00261'), Decimal('0.03612'))
>>> cc.power
(Decimal('1.0'), Decimal('1.0'), Decimal('1.0'))
>>> cc.sat
Decimal('1.2')
>>> cc.id
'015_xf_seqGrade_v01'
>>> cc.file_in
'/Users/niven/cdls/xf/015.cc'

Note: When parsing, the id attribute is set in a variety of ways depending on how much information is available.
Some formats, like cc, have an explicitly tagged id field that is always used. Other formats, like flex, have no such
field and the parser tries to grab any scene/take metadata it can find to construct one. The last fallback is always the
filename. For formats that can contain multiple ColorCorrection , the id has a created instance number after it.

4.2.2 Using ColorCorrection

Slope, Offset and Power

Setting the CDL slope, offset and power (SOP) values is as easy as passing them any list or tuple with three values.
Integers, strings and floats will be automatically converted to Decimals, while slope and power will also truncate at
zero.

>>> cc.slope = ('1.234', 5, 273891.37823)
>>> cc.slope
(Decimal('1.234'), Decimal('5.0'), Decimal('273891.37823'))
>>> cc.offset = (-0.0013, 0.097, 0.001)
>>> cc.offset
(Decimal('-0.0013'), Decimal('0.097'), Decimal('0.001'))
>>> cc.power = (-0.01, 1.0, 1.0)
>>> cc.power
(Decimal('0.0'), Decimal('1.0'), Decimal('1.0'))

12 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

>>> cc.power = (1.01, 1.007)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "cdl_convert/correction.py", line 306, in power
self.sop_node.power = power_rgb

File "cdl_convert/correction.py", line 668, in power
value = self._check_setter_value(value, 'power')

File "cdl_convert/correction.py", line 767, in _check_setter_value
value = self._check_rgb_values(value, name, negative_allow)

File "cdl_convert/correction.py", line 709, in _check_rgb_values
values=values

ValueError: Error setting power with value: "(1.01, 1.007)". Power values given as a list or tuple must have 3 elements, one for each color.

It’s also possible to set the SOP values with a single value, and have it copy itself across all three colors. Setting SOP
values this way mimics how color corrections typically start out.

>>> cc.slope = 1.2
>>> cc.slope
(Decimal('1.2'), Decimal('1.2'), Decimal('1.2'))

Saturation

Saturation is a positive float values, and the same checks and conversions that we do on SOP values happen for
saturation as well.

>>> cc.sat = 1.1
>>> cc.sat
Decimal('1.1')
>>> cc.sat = '1.2'
>>> cc.sat
Decimal('1.2')
>>> cc.sat = 1
>>> cc.sat
Decimal('1.0')
>>> cc.sat = -0.1
>>> cc.sat
Decimal('0.0')

Warning: If it’s desired to have negative values raise an exception instead of truncating to zero, set the global
config module variable HALT_ON_ERROR to be True.

>>> cdl.config.HALT_ON_ERROR = True
>>> cc.power = (-0.01, 1.0, 1.0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "cdl_convert/correction.py", line 306, in power

self.sop_node.power = power_rgb
File "cdl_convert/correction.py", line 668, in power

value = self._check_setter_value(value, 'power')
File "cdl_convert/correction.py", line 767, in _check_setter_value

value = self._check_rgb_values(value, name, negative_allow)
File "cdl_convert/correction.py", line 720, in _check_rgb_values

negative_allow
File "cdl_convert/base.py", line 419, in _check_single_value

value=value
ValueError: Error setting power with value: "-0.01". Values must not be negative

4.2. ColorCorrection Usage 13

cdl_convert Documentation, Release 0.9.1

Description

Certain formats of the cdl will contain multiple description entries. Each description entry is added to the desc
attribute, which returns a list of the entries.

>>> cc.desc
['John enters the room', '5.6 ISO 800', 'bad take']

You can append to list by setting the description field like normal.

>>> cc.desc = 'final cc'
>>> cc.desc
['John enters the room', '5.6 ISO 800', 'bad take', 'final cc]

Setting the value to a new list or tuple will replace the list.

>>> cc.desc
['John enters the room', '5.6 ISO 800', 'bad take', 'final cc]
>>> cc.desc = ['first comment', 'second comment']
>>> cc.desc
['first comment', 'second comment']

Id and Files

When creating a ColorCorrection, the id field is checked against a global list of ColorCorrection ids, and
creation fails if the id is not unique.

You can change the id after creation, but it will perform the same check.

>>> cc = cdl.ColorCorrection(id='cc1', input_file='./myfirstcdl.cc')
>>> cc2 = cdl.ColorCorrection(id='cc2', input_file='./mysecondcdl.cc')
>>> cc.id
'cc1'
>>> cc2.id
'cc2'
>>> cc2.id = 'cc1'
Traceback (most recent call last):

File "<ipython-input-8-b2b5487dbc63>", line 1, in <module>
cc2.id = 'cc1'

File "cdl_convert/correction.py", line 362, in id
self._set_id(value)

File "cdl_convert/correction.py", line 430, in _set_id
cc_id=cc_id

ValueError: Error setting the id to "cc1". This id is already a registered id.

A ValueError is only raised if HALT_ON_ERROR is set. If HALT_ON_ERROR is not set (default), a number will be
appended to the non-duplicate ID.

So if you already have a ColorCorrection with the id of ‘sh100cc’, the second ColorCorrection you set to have that id
will actually set to ‘sh100cc001’.

At the current time, file_out cannot be set directly. file_out is determined by using the class method
determine_dest, which takes a provided directory, the id and figures out the output path.

>>> cc.file_in
'/Users/sean/cdls/xf/015.cc'
>>> cc.file_out
>>> cc.determine_dest('cdl', '/Users/potter/cdls/converted/')
>>> cc.id

14 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

'015_xf_seqGrade_v01'
>>> cc.file_out
'/Users/potter/cdls/converted/015_xf_seqGrade_v01.cdl'

4.2.3 Writing ColorCorrection

When you’re done tinkering with the ColorCorrection instance, you might want to write it out to a file. We
need to give ColorCorrection the file extension we plan to write to, then call a write function with our
ColorCorrection instance, which will actually convert the values on the ColorCorrection into the format
desired, then write that format to disk.

>>> cc.determine_dest('cdl', '/Users/potter/cdls/converted/')
>>> cc.file_out
'/Users/potter/cdls/converted/015_xf_seqGrade_v01.cdl'
>>> cdl.write_cdl(cc)

Warning: It is highly likely that in the future, these will be methods on the ColorCorrection class itself, and
that instead of writing the file directly, they will instead return a string formatted for writing.

4.3 Color Collections

Once installed with pip, importing cdl_convert works like importing any other python module.

>>> import cdl_convert as cdl

4.3.1 Creating ColorCollection

The ColorCollection class represents both the ColorCorrectionCollection and
ColorDecisionList containers of the ASC CDL spec.

The distinctions between the two are fairly trivial:

ColorCorrectionCollection contain one or more ColorCorrections (which directly corre-
spond to ColorCorrection), as well as the normal Description, InputDescription and
ViewingDescription fields.

ColorDecisionList contain ColorDecision (directly corresponding to ColorDecision) instead of
ColorCorrection . Those ColorDecision in turn contain the same ColorCorrection elements that
ColorCorrectionCollection directly contains. Alongside the ColorCorrection are optional MediaRef
elements (again directly corresponding to MediaRef), which simply contain a path to reference media for the
ColorCorrection alongside.

Note: One final difference is that instead of a ColorCorrection element, a ColorDecision could instead
contain a ColorCorrectionRef, which is simply an id reference to another ‘‘ColorCorrection.

ColorCollection has a type attribute that determines what the ColorCollection currently describes when
you call its XML attributes. Setting this to ’ccc’ will cause a ColorCorrectionCorrection to be returned
when the xml attribute is retrieved. Setting it to ’cdl’ causes a ColorDecisionList to appear instead.

4.3. Color Collections 15

cdl_convert Documentation, Release 0.9.1

Note: No matter what combination of ColorDecision or ColorCorrection a single ColorCollection
has, any members of the ‘opposite’ class will be displayed correctly when you switch the type.

If you have 3 ColorDecision (each with their own ColorCorrection) under the color_decisions
attribute, and 4 ColorCorrection under the color_corrections attribute, the XML will export 7
ColorCorrection elements when type is set to ’ccc’, and 7 ColorDecision elements when type is
set to ’cdl’.

The converted elements are created ‘on the fly’ and are not saved, simply exported that way.

Unlike a ColorCorrection , ColorCollection does not have any default values. The description attributes it
inherits from AscColorSpaceBase and AscDescBase default to none.

Those inherited attributes are input_desc (to describe the colorspace entering the correction, viewing_desc
(to describe the colorspace conversions that must occur for viewing, and what type of monitor was used), and desc
(which can be an infinitely long list of shot descriptions)

Note: When a child ColorCorrection does not have an input_desc or a viewing_desc of it’s own and
that child is exported alone to a .cc file, the descriptions from it’s parent are used.

When a child ColorCorrection has an input_desc or a viewing_desc, that attribute is considered to have
overruled the parent attribute.

In both cases, desc‘‘s from the parent are prepended to the child node’s ‘‘desc.

When elements (such as desc) are placed into the child ColorCorrection, their text data is prepended with
From Parent Collection: to easily distinguish between inherited fields and native.

Warning: The above note describes behavior not yet implemeneted and should be ignored. The author of the
above note has been sacked.

Direct Creation

Creating a new ColorCollection is easy, and requires no arguments.

>>> ccc = cdl.ColorCollection()

Alternatively, you can pass in an input_file:

>>> ccc = cdl.ColorCollection(input_file='CoolMovieSequence.ccc')
>>> ccc.file_in
'/proj/UltimateMovie/share/color/CoolMovieSequence.ccc'

Parsing a CDL Collection file

When the collection you want to manipulate already exists, you’ll want to parse the file on disk. EDL files, .ccc and
.cdl files all return a single ColorCollection object, which contains all the child color corrections.

>>> collection = cdl.parse_ccc('/myfirstedl.ccc')
<cdl_convert.ColorCollection object at 0x100633b40>,
>>> collection.color_corrections
[

<cdl_convert.correction.ColorCorrection object at 0x100633b90>,
<cdl_convert.correction.ColorCorrection object at 0x100633c50>,

16 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

<cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
<cdl_convert.correction.ColorCorrection object at 0x100633b50>,
<cdl_convert.correction.ColorCorrection object at 0x100633d90>,
<cdl_convert.correction.ColorCorrection object at 0x100633b10>,
<cdl_convert.correction.ColorCorrection object at 0x100633ad0>,

]

When parsing to a ColorCollection from disk, the type of file you parse determines what type is set to. Parsing
an EDL or a .cdl file creates a ColorCollection with a type of ’cdl’ (since EDLs contain many media
references and may even include ColorCorrectionRef elements), while parsing a .ccc file or multiple .cc
files will create an instance with a type of ’ccc’.

Note: At the current time, parsing EDLs results on a ccc collection, not a cdl as stated above.

4.3.2 Using ColorCollection

Adding children to ColorCollection

Already created ColorCorrection or ColorDecision can be added to the correct child list by calling the
append_child method.

>>> ccc.color_corrections
[]
>>> ccc.append_child(cc)
>>> ccc.color_corrections
[

<cdl_convert.correction.ColorCorrection object at 0x1004a5590>
]
>>> ccc.append_child(cd)
>>> ccc.color_decisions
[

<cdl_convert.decision.ColorDecision object at 0x1004a5510>
]

append_child automatically detects which type of child you are attempting to append, and places it in the correct
list. You can use append_children to append a list of children at once- the list can even contain mixed classes.

>>> list_of_colors
[

<cdl_convert.correction.ColorCorrection object at 0x100633b90>,
<cdl_convert.decision.ColorDecision object at 0x100633b10>,
<cdl_convert.correction.ColorCorrection object at 0x100633c50>,
<cdl_convert.correction.ColorCorrection object at 0x100633b50>,
<cdl_convert.decision.ColorDecision object at 0x100633d90>,
<cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
<cdl_convert.decision.ColorDecision object at 0x100633ad0>,

]
>>> ccc.append_children(list_of_colors)
>>> ccc.color_corrections
[

<cdl_convert.correction.ColorCorrection object at 0x100633b90>,
<cdl_convert.correction.ColorCorrection object at 0x100633c50>,
<cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
<cdl_convert.correction.ColorCorrection object at 0x100633b50>,

]

4.3. Color Collections 17

cdl_convert Documentation, Release 0.9.1

>>> ccc.color_decisions
[

<cdl_convert.decision.ColorDecision object at 0x100633d90>,
<cdl_convert.decision.ColorDecision object at 0x100633b10>,
<cdl_convert.decision.ColorDecision object at 0x100633ad0>,

]

append_child and append_children will fail if you attempt to append a child which has a match-
ing id to an already present child. The only exception is a ColorCorrectionRef , which of course
should have the same id as a full ColorCorrection .

Warning: Both appand_child and append_children will change the parent attribute of
ColorCorrection and ColorDecision to point to the ColorCollection they are appending to. Since
we don’t enforce a 1 parent to each child relationship, it’s very easy to accidentally lose track of original parentage.
While the child’s parent attribute might point to another ColorCollection, the children of a collection will
never be removed from the color_corrections, color_decisions and all_children lists.
You can immediately reset the parent attribute to point to a specific instance of ColorCollection by calling
the set_parentage method.

Merging multiple ColorCollection

If you have multiple ColorCollection and wish to end up with a single collection, you’ll need to merge them
together. Assuming you have two ColorCollection with the names ccc and dl with the following information:

>>> ccc.input_desc
'LogC to sRGB'
>>> ccc.viewing_desc
'DaVinci Resolve on Eizo'
>>> ccc.desc
[

'When Babies Attack Test DI',
'Do not use for final',
'Color by Zap Brannigan',

]
>>> ccc.type
'ccc'
>>> ccc.all_children
[

<cdl_convert.correction.ColorCorrection object at 0x100633b90>,
<cdl_convert.correction.ColorCorrection object at 0x100633c50>,
<cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
<cdl_convert.correction.ColorCorrection object at 0x100633b50>,

]
>>> dl.input_desc
'Cineon Log'
>>> dl.viewing_desc
'Panasonic Plasma rec709'
>>> dl.desc
[

'Animals shot with a fisheye lens',
'cute fluffy animals',
'watch for blown out highlights',
'Color by Zap Brannigan',

]
>>> dl.type
'cdl'

18 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

>>> dl.all_children
[

<cdl_convert.decision.ColorDecision object at 0x100633d90>,
<cdl_convert.decision.ColorDecision object at 0x100633b10>,
<cdl_convert.decision.ColorDecision object at 0x100633ad0>,

]

You merge by choosing a ‘parent’ collection, and calling the merge_collections method on it.

>>> merged = ccc.merge_collections([dl])
>>> merged.all_children
[

<cdl_convert.correction.ColorCorrection object at 0x100633b90>,
<cdl_convert.correction.ColorCorrection object at 0x100633c50>,
<cdl_convert.correction.ColorCorrection object at 0x100633cd0>,
<cdl_convert.correction.ColorCorrection object at 0x100633b50>,
<cdl_convert.decision.ColorDecision object at 0x100633d90>,
<cdl_convert.decision.ColorDecision object at 0x100633b10>,
<cdl_convert.decision.ColorDecision object at 0x100633ad0>,

]

Note: When merging multiple ColorCollection , any duplicate children objects (if you had the same
ColorCorrection object assigned as a child to multiple ColorCollection) are removed, so the list only
contains unique members.

The parent determines which Input and Viewing Description overrides all of the other merged collections. type is
also set to match the type of the parent. Since ccc was our parent:

>>> merged.input_desc
'LogC to sRGB'
>>> merged.viewing_desc
'DaVinci Resolve on Eizo'
>>> merged.type
'ccc'

If we had used dl as the merged parent:

>>> merged = dl.merge_collections([ccc])
>>> merged.input_desc
'Cineon Log'
>>> merged.viewing_desc
'Panasonic Plasma rec709'
>>> merged.type
'cdl'

Unlike the Input and Viewing Descriptions, the normal Description attributes are all merged together.

>>> merged.desc
[

'When Babies Attack Test DI',
'Do not use for final',
'Color by Zap Brannigan',
'Animals shot with a fisheye lens',
'cute fluffy animals',
'watch for blown out highlights',
'Color by Zap Brannigan',

]

4.3. Color Collections 19

cdl_convert Documentation, Release 0.9.1

Note: Unlike the lists of children, duplicates are not removed from the list of descriptions.

4.4 Installation

4.4.1 Pip Install

Using pip is the preferred method of installation, as it installs cdl_convert both as a python module and a script.

$ pip install cdl_convert

4.4.2 Script Only Installation

If you don’t want to bother with a pip style install, you can alternatively grab the entire cdl_convert directory, then set
up a shortcut to call cdl_convert/cdl_convert.py

Creating aliases, etc are beyond the scope of this documentation.

4.5 Changelog

4.5.1 Version 0.9.1

• Fixed a bug where ALE’s with blank lines would not convert correctly.

4.5.2 Version 0.9

• Added ability to parse CMX EDLs

• Fixed a script bug where a collection format containing color decisions will not have those color decisions
exported as individual color corrections.

• Fixed a bug where we weren’t reading line endings correctly in certain situations.

• Added a cdl_convert.py stub file to the package root level, which will allow running of the cdl_convert
script without installation. Due to relative imports in the python code, it was no longer possible to call
cdl_convert/cdl_convert.py directly.

• The script, when run directly from cdl_convert.py, will now write errors to stderror correctly, and exit with a
status of 1.

4.5.3 Version 0.8

• Added –single flag. When provided with an output collection format, each color correction in the input will be
exported to it’s own collection.

• Giving a ColorCorrection a non-duplicate ID now works unless the --halt flag is given. This means that
incoming collections that contain duplicate IDs will not fail out.

20 Chapter 4. Table of Contents

http://github.com/shidarin/cdl_convert/

cdl_convert Documentation, Release 0.9.1

4.5.4 Version 0.7.1

• Fixed bug where ALE’s without ‘Scan Filename’ fields could not parse correctly.

4.5.5 Version 0.7

The biggest change in 0.7 is the addition of collection format support. .ccc, Color Correction Collections, can now
be parsed and written. .cdl, Color Decision Lists, can now be parsed and written. .ale and .flex files now return
a collection.

• New script flags:

– Adds --check flag to script, which checks all parsed ColorCorrects for sane values, and prints
warnings to shell

– Adds -d, --destination flag to the script, which allows user to specify the output directory
converted files will be written to.

– Adds --no-ouput flag to the script, which goes through the entire conversion process but doesn’t
actually write anything to disk. Useful for troubleshooting, especially when combined with --check

– Adds --halt flag to the script, which halts on errors that can be resolved safely (such as negative
slope or power values)

• Renames ColorCollectionBase to ColorCollection , since it will be used directly by both ccc and
cdl.

• Adds parse_ccc which returns a ColorCollection .

• Adds write_ccc which writes a ColorCollection as a ccc file.

• Adds parse_cdl which returns a ColorCollection .

• Adds write_cdl which returns a ColorCollection as a cdl file.

• ColorCollection is now a fully functional container class, with many attributes and methods.

• Added ColorDecision , which stores either a ColorCorrection or ColorCorrectionRef , and an
optional MediaRef

• Added ColorCorrectionRef , which stores a reference to a ColorCorrection

• Added parent attribute to ColorCorrection .

• Calling sop_node or sat_node on a ColorCorrection before attempting to set a SOP or Sat power
now works.

• ColorCorrection cdl_file init argument renamed to input_file, which is now optional and able to
be set after init.

• parse_cc and parse_rnh_cdl now only yield a single ColorCorrection , not a single member list.

• Added dev-requirements.txt (contains mock)

• All determine_dest methods now take a second directory argument, which determines the output
directory.

• Adds sanity_check function which prints values which might be unusual to stdout.

• parse_cdl and write_cdl renamed to parse_rnh_cdl and write_rnh_cdl respectively.

• member_reset methods:

4.5. Changelog 21

cdl_convert Documentation, Release 0.9.1

– ColorCorrection now has a reset_members method, which resets the class level member’s
dictionary.

– MediaRef also has a reset_members method, as does ColorCollection

– reset_all function calls all of the above reset_members methods at once.

• Renamed cdl_file argument:

– parse_cc cdl_file arg renamed to input_file and now accepts a either a raw string or an
ElementTree Element as input_file.

– parse_rnh_cdl cdl_file arg renamed to input_file.

– parse_ale edl_file arg renamed to input_file.

– parse_flex edl_file arg renamed to input_file.

• Python Structure Refactoring

– Moved HALT_ON_ERROR into the config module, which should now be referenced and set by
importing the entire config module, and referencing or setting config.HALT_ON_ERROR

– Script functionality remains in cdl_convert.cdl_convert, but everything else has been moved
out.

– AscColorSpaceBase , AscDescBase , AscXMLBase and ColorNodeBase now live under
cdl_convert.base

– ColorCollection now lives in cdl_convert.collection

– ColorCorrection , SatNode and SopNode now live under cdl_convert.correction

– ColorDecision , ColorCorrectionRef and MediaRef now live under
cdl_convert.decision

– All parse functions now live under cdl_convert.parse

– All write functions now live under cdl_convert.write

– sanity_check now live under cdl_convert.utils

– reset_all now lives under the main module

4.5.6 Version 0.6.1

• Added AscXMLBase class for nodes that can be represented by XML to inherit.

• Suppressed scientific notation from being written out when writing files. Should now write out as close as
Python accuracy allows, and the same number of digits.

• write_cc now writes out 100% correct XML using ElementTree.

• Added tests for write_cc, which brings our coverage to 100%

4.5.7 Version 0.6

• Adds much greater ASC CDL XML compliance with the addition of many classes that represent node concepts
in the CDL XML schema.

• Moves viewing_desc and input_desc attributes and methods into the base class
AscColorSpaceBase .

• Moved desc attribute and methods into the base class AscDescBase .

22 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

• Adds ColorCollectionBase class for a basis of all collection type nodes
(ColorCorrectionCollection , ColorDecisionList , etc).

• Adds MediaRef class which represents the MediaRef node of a ColorDecision. This class allows convenient
handling of files given as media reference.

• Adds HALT_ON_ERROR module variable which determines certain exception handling behavior. Exceptions
that can normally be handled with default behavior (such as negative Slope or Power values) will be dealt with
silently instead of stopping the program. Negative Slope and Power values, for example, will clip to 0.0.

• ColorCorrection (formally AscCdl) class changes:

– Renames AscCdl to ColorCorrection .

– Adds class level member dictionary, which allows lookup of a ColorCorrection instance by the
unique ID.

– ColorCorrection objects now require a unique ID to be instantiated.

– Removes metadata attribute of ColorCorrection .

– Moves SOP and SAT operations out of ColorCorrection into their own classes, which are based
on ColorNodeBase . The SatNode and SopNode classes are still meant to be children of
ColorCorrection.

– Added sop_node and sat_node attributes to access the child SatNode and SopNode .

– Removed metadata attribute, splitting it into the inherited attributes of input_desc,
viewing_desc and desc.

– desc attribute is now fully fleshed out as a list of all encountered description fields.

– Renamed cc_id field to id, shadowing the built in id within the class.

– Slope, Offset and Power now return as a tuple instead of a list to prevent index assignment, appending
and extending.

• parse_cc should now parse a much greater variety of .cc files more accurately.

– Now supports infinite Description fields

– Now supports Viewing and Input Description fields

– Significantly simplifies the function.

• parse_flex has been significantly simplified.

• Test Suite broken up into sub-modules.

• Adds PyPy support.

• Adds ReadTheDocs

• Adds docs to build

4.5.8 Version 0.5

• Project is now structured according to Python packaging guidelines with setup.py etc.

• Some AscCdl attributes have been moved into dictionaries (Note that this was later reversed in release 0.6)

• Refactors some parse functions to be less complex

• Makes write_cdl much simpler and more pythonic.

4.5. Changelog 23

cdl_convert Documentation, Release 0.9.1

4.5.9 Version 0.4.2

• Hotfix to fix from __future__ imports

4.5.10 Version 0.4.1

• PEP 8 conversion

• landscape.io support

• Uses from __future__ for print

4.5.11 Version 0.4

• Python 3 compatible

• More unit testing bug fixes and enhancements.

• Adds better type and exception handling for AscCdl setters.

• Now sanitizes id fields of any characters they shouldn’t contain.

• Test suite runs on windows now

• Adds Travis-ci for continuous integration testing

• parse_cc now uses ElementTree for XML parsing

4.6 Support

4.6.1 GitHub

At cdl_convert‘s GitHub page you can browse the code and the history of the project.

Builds can be downloaded from the GitHub page or the PyPI repository entry.

4.6.2 Bug Reporting

The issues page on GitHub is the best place to report bugs or request support, and while cdl_convert is distributed
with no warranty of any kind, issues will be read and helped if able.

Please fill out an issue describing the problem you are having. Attaching sample files to show what’s not working, and
the full printout from your shell.

4.6.3 Contact

Support will not be given over email, twitter, etc. If you need support, use the issues page at GitHub. That said, if you
want to say ‘hi’ or see what I’m currently working on, you can try me at one of the following:

• twitter: @shidarin

• email: shidarin@alphamatte.com

• github blog: http://shidarin.github.io/

24 Chapter 4. Table of Contents

https://www.python.org/dev/peps/pep-0008
http://github.com/shidarin/cdl_convert
http://pypi.python.org/pypi/cdl_convert
http://github.com/shidarin/cdl_convert/issues
http://github.com/shidarin/cdl_convert/issues
http://twitter.com/shidarin
mailto:shidarin@alphamatte.com
http://shidarin.github.io/

cdl_convert Documentation, Release 0.9.1

4.7 Frequently Asked Questions

4.7.1 Python 2 & 3 Support

• What versions of Python does cdl_convert support? cdl_convert works in Python 2.6 through 3.4
and PyPy. A full test suite runs continuous integration through Travis-ci.org, coverage through coveralls.io,
and code quality checked with landscape.io. Code is PEP 8 compliant, with docstrings following google
code docstring standards.

• Really? It works on both Python 2 and 3? And PyPy? Yes. No conversion or modification needed.

4.7.2 CDL Format Support

• Why don’t you support format X? I either haven’t had time to build a parser for the format yet, or I might
even be unaware it exists. Perhaps you should drop by the issues page and create a request for the format?
If creating a request for a format it helps immensely to have a sample of that format.

4.7.3 Project Structure

• Why the underscore? cdl_convert started as a simple script to convert from one format to another. As
such, it wasn’t named with the standards that one would usually use for a python module. By the time the
project became big enough, was on PyPI, etc, it was too spread out on the web, in too many places to make
changing easy. In the end, I opted to keep it. At some point, cdl_convert might migrate into a larger,
more generic film & tv python module, which will be named properly.

4.8 Contributing

Note: Portions of this page have been modified from the excellent OpenComparison project docs.

4.8.1 Contributing CDL and EDL Samples

Please, please, please submit samples of the following formats:

• FLEx

• ALE

• CMX

• CCC

• CDL

These are complex formats, and seeing real world samples helps write tests that ensure correct parsing of real world
EDLs and CDLs. If you don’t even see a format of CDL listed that you know exists, open an issue at the github issues
page asking for parse/write support for the format, and include a sample.

4.7. Frequently Asked Questions 25

http://travis-ci.org/shidarin/cdl_convert
http://coveralls.io/r/shidarin/cdl_convert
http://landscape.io/
https://www.python.org/dev/peps/pep-0008
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html#Comments
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html#Comments
http://github.com/shidarin/cdl_convert/issues
http://opencomparison.readthedocs.org/en/latest/contributing.html
http://github.com/shidarin/cdl_convert/issues

cdl_convert Documentation, Release 0.9.1

4.8.2 Issues & Bugs

Take a look at the issues page and if you see something that you think you can bang out, leave a comment saying
you’re going to take it on. While many issues are already assigned to the principal authors, just because it’s assigned
doesn’t mean any work has begun.

Feel welcome to post issues, feature requests and bugs that aren’t present.

4.8.3 Workflow

cdl_convert is a GitFlow workflow project. If you’re not familiar with GitFlow, please take a moment to read the
workflow documentation. Essentially it means that all work beyond tiny bug fixes needs to be done on it’s own feature
branch, called something like feature/thing_I_am_fixing.

After you fork the repository, take a second to create a new feature branch from the develop branch and checkout
that newly created branch.

Submitting Your Fix

Once you’ve pushed your feature branch to GitHub, it’s time to generate a pull request back to the central
cdl_convert repository.

The pull request let’s you attach a comment, and when you’re addressing an issue it’s imperative to link to that issue in
the initial pull request comment. We’ll shortly be notified of your request and it will be reviewed as soon as possible.

Warning: If you continue to add commits to the feature branch you submitted as a pull request, the pull request
will be updated with those changes (as long as you push those changes to GitHub). This is why you should not
submit a pull request of the develop branch.

4.8.4 Pull Request Tips

cdl_convert really needs your collaboration, but we only have so much time to work on the project and merge
your fixes and features in. There’s some easy to follow guidelines that will ensure your pull request is accepted and
integrated quickly.

Run the tests!

Before you submit a pull request, please run the entire test suite via

$ python setup.py test

If the tests are failing, it’s likely that you accidentally broke something. Note which tests are failing, and how your
code might have affected them. If your change is intentional- for example you made it so urls all read https://
instead of http://, adjust the test suite, get it back into a passing state, and then submit it.

If your code fails the tests (Travis-ci.org checks all pull requests when you create them) it will be rejected.

Add tests for your new code

If your pull request adds a feature but lacks tests then it will be rejected.

26 Chapter 4. Table of Contents

http://github.com/shidarin/cdl_convert/issues
http://nvie.com/posts/a-successful-git-branching-model/
http://travis-ci.org/shidarin/cdl_convert

cdl_convert Documentation, Release 0.9.1

Tests are written using the standard unittest framework. Please keep test cases as simple as possible while maintaining
a good coverage of the code you added.

Warning: Tests are currently written in the style of unittest with camelCased method & variable names. Please
follow PEP 8 otherwise.

Don’t mix code changes with whitespace cleanup

If you change two lines of code and correct 200 lines of whitespace issues in a file the diff on that pull request is
functionally unreadable and will be rejected. Whitespace cleanups need to be in their own pull request.

Keep your pull requests limited to a single issue

Pull requests should be as small/atomic as possible. Large, wide-sweeping changes in a pull request will be rejected,
with comments to isolate the specific code in your pull request.

Follow PEP-8 and keep your code simple!

Memorize the Zen of Python

>>> python -c 'import this'

Please keep your code as clean and straightforward as possible. When we see more than one or two functions/methods
starting with _my_special_function or things like __builtins__.object = str we start to get worried. Rather than try and
figure out your brilliant work we’ll just reject it and send along a request for simplification.

Furthermore, the pixel shortage is over. We want to see:

• package instead of pkg

• grid instead of g

• my_function_that_does_things instead of mftdt

If the code style doesn’t follow PEP 8 , it’s going to be rejected.

4.8.5 Copyright of Submitted Contributions

When submitting, you’ll be asked to waive copyright to your submitted code to the listed authors. This is so we can
keep a tight handle on the code and change the license for future releases if needed.

4.9 Licenses

4.9.1 Software

The MIT License (MIT)

cdl_convert
Copyright (c) 2015 Sean Wallitsch
http://github.com/shidarin/cdl_convert/

4.9. Licenses 27

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
http://github.com/shidarin/cdl_convert/

cdl_convert Documentation, Release 0.9.1

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

4.9.2 Documentation

cdl_convert

The MIT License (MIT)

cdl_convert
Copyright (c) 2015 Sean Wallitsch
http://github.com/shidarin/cdl_convert/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

OpenComparison

Portions of this project’s documentation used the excellent OpenComparison project docs as a base, and their license
must accompany it:

Copyright (c) 2010-2012 Audrey Roy, Daniel Greenfeld, and contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

28 Chapter 4. Table of Contents

http://github.com/shidarin/cdl_convert/
http://opencomparison.readthedocs.org/en/latest/contributing.html

cdl_convert Documentation, Release 0.9.1

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

4.10 API Reference

4.10.1 Classes

The class structure of cdl_convert mirrors the element structure of the XML schema for ccc, cdl and cc
files as defined by the

ASC. The XML schema’s represent the most complicated and structured variant of the format, and therefore it be-
hooves the project to mimic their structure.

However, where similar elements exist as entirely separate entities in the XML schema, they might have been combined
here.

AscColorSpaceBase

Classes that deal with input and viewer colorspace can subclass from this class to get the input_desc and
viewing_desc attributes.

class cdl_convert.base.AscColorSpaceBase
Base class for Asc XML type nodes that deal with colorspace

This class is meant to be inherited by any node type that used viewing and input colorspace descriptions.

This class doesn’t do a lot right now, as we don’t have any specific controls on how to set or retrieve these
fields. In the future however, we’ll parse incoming descriptions to try and resolve input colorspace and viewing
colorspace.

Attributes:

input_desc [(str)] Description of the color space, format and properties of the input images. Indi-
vidual ColorCorrections can override this.

viewing_desc [(str)] Viewing device, settings and environment. Individual ColorCorrections
can override this.

Public Methods:

parse_xml_input_desc() Parses an ElementTree Element to find & add an InputDescription. If none
is found, input_desc will remain set to None.

parse_xml_viewing_desc() Parses an ElementTree Element to find & add a ViewingDescription. If
none is found, viewing_desc will remain set to None.

4.10. API Reference 29

cdl_convert Documentation, Release 0.9.1

AscDescBase

Classes that are allowed to have a description field subclass from this from this class to get the desc attribute. The
desc attribute can be set with a single string, which will append to the list of strings already present in desc. If set
to a list or tuple, desc will become a list of those values. If set to None, desc will become an empty list.

class cdl_convert.base.AscDescBase
Base class for most Asc XML type nodes, allows for infinite desc

This class is meant to be inherited by any node type that uses description fields.

Attributes:

desc [[str]] Since all Asc nodes which can contain a single description, can actually contain an
infinite number of descriptions, the desc attribute is a list, allowing us to store every single
description found during parsing.

Setting desc directly will cause the value given to append to the end of the list, but desc can also
be replaced by passing it a list or tuple. Desc can be emptied by passing it None, [] or ().

Public Methods:

parse_xml_descs() Parses an ElementTree Element for any Description tags and appends any text
they contain to the desc.

AscXMLBase

class cdl_convert.base.AscXMLBase
Base class for nodes which can be converted to XML Elements

This class contains several convenience attributes which can be used to retrieve ElementTree Elements, or nicely
formatted strings.

Attributes:

element [(<xml.etree.ElementTree.Element>)] etree style Element representing the node.

xml [(str)] A nicely formatted XML string representing the node.

xml_root [(str)] A nicely formatted XML, ready to write to file string representing the node. For-
matted as an XML root, it includes the xml version and encoding tags on the first line.

Public Methods:

build_element() A placeholder method to be overridden by inheriting classes, calling it will always
return None.

ColorCollection

This class functions as both a ColorDecisionList and a ColorCorrectionCollection. It’s children can be either Col-
orDecisions, ColorCorrections, or a combination of the two. Despite being able to have either type of child, the
ColorCollection still needs to know which type of collection you want it to represent.

Setting the type of the ColorCollection to either ccc or cdl causes children of the opposite type to be
converted into the appropriate type when exporting the class.

Note: parse_ale and parse_flex both return as a ccc at this time, contrary to the documentation below.

In addition, the inclusion of parent metadata into orphaned children is also a work in progress.

30 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

If parse_ale is used to parse an ale edl file, the ale will be read into a ColorCollection set to cdl and the
children the ale creates will actually be ColorDecision , as that allows for the easy inclusion of MediaRef
objects. If you then use write_ccc to write a ccc file, all the children ColorDecision will create XML
elements for their ColorCorrection children, adding in any MediaRef that were found as Description
elements. Finally the ColorCollection type is set to ccc and the xml_root field is called, which knows to
return a ccc style XML element to write_ccc.

class cdl_convert.collection.ColorCollection(input_file=None)
Container class for ColorDecisionLists and ColorCorrectionCollections.

Collections need to store children and have access to descriptions, input descriptions, and viewing descriptions.

Class Attributes:

members [[:class‘ColorCollection‘]] All instanced ColorCollection are added to this mem-
ber list. Unlike the ColorCorrection member’s dictionary, ColorCollection do not
need any unique values to exist.

This is currently only used for determining an id value when exporting and no file_in attribute
is set.

Attributes:

all_children [(ColorCorrection, ColorDecision)] A tuple of all the children of this col-
lection, both Corrections and Decisions.

color_corrections [(ColorCorrection)] All the ColorCorrection children are listed here.

color_decisions [(ColorDecision)] All the ColorDecision children are listed here.

desc [[str]] Since all Asc nodes which can contain a single description, can actually contain an
infinite number of descriptions, the desc attribute is a list, allowing us to store every single
description found during parsing.

Setting desc directly will cause the value given to append to the end of the list, but desc can also
be replaced by passing it a list or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .

element [(<xml.etree.ElementTree.Element>)] etree style Element representing the node. Inherited
from AscXMLBase .

file_in [(str)] Filepath used to create this ColorCollection .

file_out [(str)] Filepath this ColorCollection will be written to.

input_desc [(str)] Description of the color space, format and properties of the input images. Inher-
ited from AscColorSpaceBase .

is_ccc [(bool)] True if this collection currently represents .ccc.

is_cdl [(bool)] True if this collection currently represents .cdl.

type [(str)] Either ccc or cdl, represents the type of collection this class currently will export by
default.

viewing_desc [(str)] Viewing device, settings and environment. Inherited from
AscColorSpaceBase .

xml [(str)] A nicely formatted XML string representing the node. Inherited from AscXMLBase.

xml_root [(str)] A nicely formatted XML, ready to write to file string representing the node. For-
matted as an XML root, it includes the xml version and encoding tags on the first line. Inherited
from AscXMLBase.

4.10. API Reference 31

cdl_convert Documentation, Release 0.9.1

xmlns [(str)] Describes the version of the ASC XML Schema that cdl_convert writes out to files
following the full schema (.ccc and .cdl)

Public Methods:

append_child() Appends the given object, either a ColorCorrection or a ColorDecision ,
to the respective attribute list, either color_corrections or color_decision depend-
ing on the class of the object passed in.

append_children() Given a list, will iterate through and append each element of that list to the
correct child list, using the append_child() method.

build_element() Builds an ElementTree XML Element for this node and all nodes it contains.
element, xml, and xml_root attributes use this to build the XML. This function is identical
to calling the element attribute. Overrides inherited placeholder method from AscXMLBase
.

Here on ColorCollection , this is a pointer to build_element_ccc() or
build_element_cdl() depending on which type the ColorCollection is currently
set to.

build_element_ccc() Builds a CCC style XML tree representing this ColorCollection in-
stance.

build_element_cdl() Builds a CDL style XML tree representing this ColorCollection in-
stance.

copy_collection() Creates and returns an exact new instance that’s an exact copy of the current
instance. Note that references to the child instances will be copied, but that the child instances
themselves will not be.

merge_collections() Merges all members of a list containing ColorCollection and the instance
this is called on to return a new ColorCollection that is primarily a copy of this instance,
but contains all children and description elements from the given collections. input_desc, view-
ing_desc, file_in, and type will be set to the values of the parent instance.

parse_xml_color_corrections() Parses an ElementTree element to find & add all ColorCorrection.

parse_xml_descs() Parses an ElementTree Element for any Description tags and appends any text
they contain to the desc. Inherited from AscDescBase

parse_xml_input_desc() Parses an ElementTree Element to find & add an InputDescription. If none
is found, input_desc will remain set to None. Inherited from AscColorSpaceBase

parse_xml_viewing_desc() Parses an ElementTree Element to find & add a ViewingDescrip-
tion. If none is found, viewing_desc will remain set to None. Inherited from
AscColorSpaceBase

reset_members() Resets the class level members list.

set_parentage() Sets all child ColorCorrection and ColorDecision parent attribute to
point to this instance.

set_to_ccc() Switches the type of this collection to export a ccc style xml collection by default.

set_to_cdl() Switches the type of this collection to export a cdl style xml collection by default.

ColorCorrection

The ColorCorrection class is the backbone of cdl_convert, as it represents the basic level of the color decision
list concept- the color decision list itself. All the parse functions exist to extract the CDL metadata and populate this
class, and all the write functions exist to write files out from this class.

32 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

Parser –> ColorCorrection –> Writer

ColorCorrection can of course be instantiated and used without a parse function, see Script Usage for a walk-
through.

Warning: When an instance of ColorCorrection is first created, the id provided is checked against a class
level dictionary variable named members to ensure that no two ColorCorrection share the same id , as this
is required by the specification.
If the id does match an already created id and HALT_ON_ERROR is not set, the id assignment will go forward,
appending the duplicate number to the back of the id. So the 2nd instance of ‘sh100cc’ will become ‘sh100cc001’.
Reset the members dictionary by either calling the reset_members method on ColorCorrection or by
reseting all cdl_convert member lists and dictionaries with the reset_all function.
If the id given is a blank string and HALT_ON_ERROR is set to False, id will be set to the total number of
ColorCorrection in the file, including the one currently being created. This behavior is not accepted when
changing the id after creation.

Warning: cdl_file is likely to not be a required attribute in the future.

class cdl_convert.correction.ColorCorrection(id, input_file=None)
The basic class for the ASC CDL

This class contains attributes for all 10 color correction numbers needed for an ASC CDL, as well as other
metadata like shot names that typically accompanies a CDL.

These names are standardized by the ASC and where possible the attribute names will follow the ASC schema.
Descriptions for some of these attributes are paraphrasing the ASC CDL documentation. For more information
on the ASC CDL standard and the operations described below, you can obtain the ASC CDL implementor-
oriented documentation by sending an email to: asc-cdl at theasc dot com

Order of operations is Slope, Offset, Power, then Saturation.

Class Attributes:

members [{str: :class‘ColorCorrection‘ }] All instanced ColorCorrection are added to this
member dictionary, with their unique id being the key and the ColorCorrection being the
value.

Attributes:

desc [[str]] Since all Asc nodes which can contain a single description, can actually contain an
infinite number of descriptions, the desc attribute is a list, allowing us to store every single
description found during parsing.

Setting desc directly will cause the value given to append to the end of the list, but desc can also
be replaced by passing it a list or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .

element [(<xml.etree.ElementTree.Element>)] etree style Element representing the node. Inherited
from AscXMLBase .

file_in [(str)] Filepath used to create this ColorCorrection .

file_out [(str)] Filepath this ColorCorrection will be written to.

has_sat [(bool)] Returns True if SOP values are set

has_sop [(bool)] Returns True if SOP values are set

id [(str)] Unique XML URI to identify this CDL. Often a shot or sequence name.

4.10. API Reference 33

cdl_convert Documentation, Release 0.9.1

Changing this value does a check against the cls.members dictionary to ensure the new id is
open. If it is, the key is changed to the new id and the id is changed.

Note that this shadows the builtin id.

input_desc [(str)] Description of the color space, format and properties of the input images. Inher-
ited from AscColorSpaceBase .

parent [(ColorCollection)] The parent node that contains this node.

sat_node [(SatNode)] Contains a reference to a single instance of SatNode , which contains the
saturation value and descriptions.

sop_node [(SopNode)] Contains a reference to a single instance of SopNode , which contains
the slope, offset, power values and descriptions.

viewing_desc [(str)] Viewing device, settings and environment. Inherited from
AscColorSpaceBase .

xml [(str)] A nicely formatted XML string representing the node. Inherited from AscXMLBase.

xml_root [(str)] A nicely formatted XML, ready to write to file string representing the node. For-
matted as an XML root, it includes the xml version and encoding tags on the first line. Inherited
from AscXMLBase.

Public Methods:

build_element() Builds an ElementTree XML Element for this node and all nodes it contains.
element, xml, and xml_root attributes use this to build the XML. This function is identical
to calling the element attribute. Overrides inherited placeholder method from AscXMLBase
.

determine_dest() When provided an output extension, determines the destination filename to be
written to based on file_in & id.

parse_xml_descs() Parses an ElementTree Element for any Description tags and appends any text
they contain to the desc. Inherited from AscDescBase

parse_xml_input_desc() Parses an ElementTree Element to find & add an InputDescription. If none
is found, input_desc will remain set to None. Inherited from AscColorSpaceBase

parse_xml_viewing_desc() Parses an ElementTree Element to find & add a ViewingDescrip-
tion. If none is found, viewing_desc will remain set to None. Inherited from
AscColorSpaceBase

reset_members() Resets the class level members list.

ColorCorrectionRef

class cdl_convert.decision.ColorCorrectionRef(id)
Reference marker to a full color correction

This is a fairly basic class that simply contains a reference to a full ColorCorrection . The id attribute
must match the id attribute in order for this class to function fully.

When writing to a format that allows empty references (like cdl), the reference can write correctly without
breaking. However, if writing to a format that does not support reference objects at all (like ccc), attempting
to write an empty reference will result in a ValueError (if HALT_ON_ERROR is set to True, or simply skip
past the reference entirely.

Class Attributes:

34 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

members [{str: [:class‘ColorCorrectionRef‘]}] All instanced ColorCorrectionRef are added
to this member dictionary. Multiple ColorCorrectionRef can share the same ref-
erence id, therefore for each reference id key, the members dictionary stores a list of
ColorCorrectionRef instances that share that id value.

Attributes:

cc [(ColorCorrection)] If the stored reference resolves to an existing ColorCorrection,
this attribute will return that node using the resolve_reference method. This attribute is
the same as calling that method.

parent [(ColorDecision)] The parent ColorDecision that contains this node.

id [(str)] The ColorCorrection id that this reference refers to. If HALT_ON_ERROR is set to
True, will raise a ValueError if set to a ColorCorrection id value that doesn’t yet
exist.

xml [(str)] A nicely formatted XML string representing the node. Inherited from AscXMLBase.

xml_root [(str)] A nicely formatted XML, ready to write to file string representing the node. For-
matted as an XML root, it includes the xml version and encoding tags on the first line. Inherited
from AscXMLBase.

Public Methods:

build_element() Builds an ElementTree XML Element for this node and all nodes it contains.
element, xml, and xml_root attributes use this to build the XML. This function is identical
to calling the element attribute. Overrides inherited placeholder method from AscXMLBase
.

reset_members() Resets the class level members list.

resolve_reference() Attempts to return the ColorCorrection that this reference is supposed to
refer to.

If HALT_ON_ERROR is set to True, resolving a bad reference will raise a ValueError ex-
ception. If not set, it will simply return None.

Otherwise (if the id attribute matches a known ColorCorrection id, the
ColorCorrection will be returned.

ColorDecision

ColorDecision’s are normally found only within ColorCorrection but this limitation of the ASC CDL schema is
not enforced by cdl_convert.

class cdl_convert.decision.ColorDecision(color_correct=None, media=None)
Contains a media ref and a ColorCorrection or reference to CC.

This class is a simple container to link a ColorCorrection (or ColorCorrectionRef) with a
MediaRef . The MediaRef is optional, the ColorCorrection is not. The ColorCorrection does not need to
be provided at initialization time however, as ColorDecision provides an XML element parser for deriving
one.

The primary purpose of a ColorDecision node is to associate a ColorCorrection node with one or more items of
Media Reference.

Along with Media Reference, a ColorDecision can contain the normal type of input, viewer and description
metadata.

Additional, it is the only node that can contain ColorCorrectionRef nodes, which link the same ColorCorrection
to many different ColorDecisions (and thus, many different items of media reference)

4.10. API Reference 35

cdl_convert Documentation, Release 0.9.1

An example containing a ColorCorrection node:

<ColorDecision>
<MediaRef ref="http://www.theasc.com/foasc-logo2.png"/>
<ColorCorrection id="ascpromo">

<SOPNode>
<Description>get me outta here</Description>
<Slope>0.9 1.1 1.0</Slope>
<Offset>0.1 -0.01 0.0</Offset>
<Power>1.0 0.99 1.0</Power>

</SOPNode>
</ColorCorrection>

</ColorDecision>

But it can also contain just a reference:

<ColorDecision>
<MediaRef ref="best/project/ever/jim.0100.dpx"/>
<ColorCorrectionRef ref="xf45.x628"/>

</ColorDecision>

Class Attributes:

members [{str: [:class‘ColorDecision‘]}] All instanced ColorDecision are added to this mem-
ber dictionary. The key is the id or reference id of the contained ColorCorrection or
ColorCorrectionRef Multiple ColorDecision can , therefore for each reference id
key, the members dictionary stores a list of ColorDecision instances that share that id
value.

Attributes:

cc [(ColorCorrection , ColorCorrectionRef)] Returns the contained ColorCorrection,
even if it’s a reference.

desc [[str]] Since all Asc nodes which can contain a single description, can actually contain an
infinite number of descriptions, the desc attribute is a list, allowing us to store every single
description found during parsing.

Setting desc directly will cause the value given to append to the end of the list, but desc can also
be replaced by passing it a list or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .

element [(<xml.etree.ElementTree.Element>)] etree style Element representing the node. Inherited
from AscXMLBase .

input_desc [(str)] Description of the color space, format and properties of the input images. Inher-
ited from AscColorSpaceBase .

is_ref [(bool)] True if contains a ColorCorrectionRef object instead of a
ColorCorrection

media_ref [(MediaRef)] Returns the contained MediaRef or None.

parent [(ColorDecisionList)] The parent node that contains this node.

set_parentage() Sets child ColorCorrection (or ColorCorrectionRef) and MediaRef
(if present) parent attribute to point to this instance.

viewing_desc [(str)] Viewing device, settings and environment. Inherited from
AscColorSpaceBase .

xml [(str)] A nicely formatted XML string representing the node. Inherited from AscXMLBase.

36 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

xml_root [(str)] A nicely formatted XML, ready to write to file string representing the node. For-
matted as an XML root, it includes the xml version and encoding tags on the first line. Inherited
from AscXMLBase.

Public Methods:

build_element() Builds an ElementTree XML Element for this node and all nodes it contains.
element, xml, and xml_root attributes use this to build the XML. This function is identical
to calling the element attribute. Overrides inherited placeholder method from AscXMLBase
.

parse_xml_color_correction() Parses a ColorDecision ElementTree Element for a ColorCorrection
Element or a ColorCorrectionRef Element.

parse_xml_color_decision() Parses a ColorDecision ElementTree Element for metadata, then calls
parsers for ColorCorrection and MediaRef.

parse_xml_descs() Parses an ElementTree Element for any Description tags and appends any text
they contain to the desc. Inherited from AscDescBase

parse_xml_input_desc() Parses an ElementTree Element to find & add an InputDescription. If none
is found, input_desc will remain set to None. Inherited from AscColorSpaceBase

parse_xml_media_ref() Parses an ColorDecision Element for a MediaRef Element.

parse_xml_viewing_desc() Parses an ElementTree Element to find & add a ViewingDescrip-
tion. If none is found, viewing_desc will remain set to None. Inherited from
AscColorSpaceBase

reset_members() Resets the class level members list.

ColorNodeBase

This class only exists to be subclassed by SatNode and SopNode and should not be used directly.

class cdl_convert.base.ColorNodeBase
Base class for SOP and SAT nodes.

This class is meant only to be inherited by SopNode and SatNode and should not be used outside of those
classes.

It inherits from both AscDescBase and AscXMLBase giving the child classes both desc and xml related
functionality.

This class is also home to a private function which helps SopNode and SatNode perform type and value
checks on incoming values.

Attributes:

desc [[str]] Since all Asc nodes which can contain a single description, can actually contain an
infinite number of descriptions, the desc attribute is a list, allowing us to store every single
description found during parsing.

Setting desc directly will cause the value given to append to the end of the list, but desc can also
be replaced by passing it a list or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .

element [(<xml.etree.ElementTree.Element>)] etree style Element representing the node. Inherited
from AscXMLBase .

xml [(str)] A nicely formatted XML string representing the node. Inherited from AscXMLBase.

4.10. API Reference 37

cdl_convert Documentation, Release 0.9.1

xml_root [(str)] A nicely formatted XML, ready to write to file string representing the node. For-
matted as an XML root, it includes the xml version and encoding tags on the first line. Inherited
from AscXMLBase.

Public Methods:

build_element() Builds an ElementTree XML Element for this node and all nodes it contains.
element, xml, and xml_root attributes use this to build the XML. This function is identical
to calling the element attribute. Overrides inherited placeholder method from AscXMLBase
.

parse_xml_descs() Parses an ElementTree Element for any Description tags and appends any text
they contain to the desc. Inherited from AscDescBase

MediaRef

Media Ref’s are normally found only inside of ColorDecision, which itself is found only inside of the
ColorDecisionList collection. This isn’t a restriction that cdl_convert explicitly enforces, but the parse
and write functions will only be creating and writing found MediaRef objects following the rules.

Where possible when writing filetypes that don’t support MediaRef, the information kept in MediaRef will be
converted into description field metadata and preserved in that way.

Note: The above metadata preservation is not yet implemented.

MediaRef is meant to provide a convenient interface for managing and interpreting data stored in CDLs. You can
change a broken absolute link directory to a relative link without touching the filename, or retrieve a full list of image
sequences contained within a referenced directory.

class cdl_convert.decision.MediaRef(ref_uri, parent=None)
A directory of files or a single file used for grade reference

MediaRef is a container for an image path that should be referenced in regards to the color correction being
performed. What that reference means must be further clarified, either through communication or Description
fields.

Requires a ref_uri and an optional parent to instantiate.

An XML URI is usually a filepath to a directory or file, sometimes proceeded by a protocol (such as http://).
Note that many of the functions and methods described below do not function properly when given a URI
with a protocol in front.

The parent of a MediaRef should typically be a ColorDecision , and in fact the CDL specification states
that no other container is allowed to contain a MediaRef. That restriction is not enforced in the python API.

Class Attributes:

members [{str: [MediaRef]}] All instances of MediaRef are added to this class level mem-
bers dictionary, with the key being the full reference URI. Since it’s possible that multiple
MediaRef point to the same reference URI, the value returned is a list of MediaRef that
all have a value of that same URI.

When you change a single MediaRef ref attribute, it removes itself from the old key’s list, and
adds itself to the new key’s list. The old key is removed from the dictionary if this MediaRef
was the last member.

Attributes:

directory [(str)] The directory portion of the URI, without the protocol or filename.

38 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

element [(<xml.etree.ElementTree.Element>)] etree style Element representing the node. Inherited
from AscXMLBase .

exists [(bool)] True if the path is present in the file system.

filename [(str)] The filename portion of the URI, without any protocol or directory.

is_abs [(bool)] True if directory is an absolute reference.

is_dir [(bool)] True if path points to a directory with no filename portion.

is_seq [(bool)] True if path points to an image sequence or a directory of image sequences. Image
sequences are determined by files ending in a dot or underscore, followed by an integer, followed
by the file extension. If the filename reference given already has pound padding or %d indication
padding, this will also return true.

Valid image sequences:

• TCM100X_20140215.0001.exr

• Bobs Big_Score_2.jpg

• 2383-279873.67267_32t7634.63278623781638218763.exr

• 104fl.x034.######.dpx

• 104fl.x034_%06d.dpx

parent [(ColorDecision)] The parent that contains this MediaRef object. This should nor-
mally be a ColorDecision , but that is not enforced.

path [(str)] The directory joined with the filename via os.path.join(), if there is no filename, path is
identical to directory. If there is no protocol, path is identicial to ref.

protocol [(str)] The URI protocol section of the URI, if any. This is the section that proceeds the
‘://’ of any URI. If there is no ‘://’ in the given URI, this is empty.

ref [(str)] The full URI reference which includes the protocol, directory and filename. If there is no
protocol and no filename, ref is identical to directory.

seq [(str)] If is_seq finds that the filename or directory refers to one or more image sequences,
seq will return the first found sequence in the form of filename.####.ext (or filename_####.ext
if the sequence has an _ in front of the frame numbers). Note that there may be more than one
image sequence if ref points to a directory. To get a list of all image sequences found, use
seqs.

Only if a reference was given to us already in the form of %d padding will seq and seqs return
a sequence filename with %d padding.

seqs [[str]] Returns all found sequences in a list. If ref points to a filename, this list will only
contain one sequence. If ref points to a directory, all sequences found in that directory will be
in this list.

xml [(str)] A nicely formatted XML string representing the node. Inherited from AscXMLBase.

xml_root [(str)] A nicely formatted XML, ready to write to file string representing the node. For-
matted as an XML root, it includes the xml version and encoding tags on the first line. Inherited
from AscXMLBase.

Public Methods:

build_element() Builds an ElementTree XML Element for this node and all nodes it contains.
element, xml, and xml_root attributes use this to build the XML. This function is identical
to calling the element attribute. Overrides inherited placeholder method from AscXMLBase
.

4.10. API Reference 39

cdl_convert Documentation, Release 0.9.1

reset_members() Resets the class level members list.

SatNode

Note: This class is meant only to be created by a ColorCorrection , and thus has the required arg of parent
when instantiating it.

class cdl_convert.correction.SatNode(parent)
Color node that contains saturation data.

Class Attributes:

element_names [[str]] Contains a list of XML Elements that refer to this class for use in parsing
XML files.

Attributes:

desc [[str]] Since all Asc nodes which can contain a single description, can actually contain an
infinite number of descriptions, the desc attribute is a list, allowing us to store every single
description found during parsing.

Setting desc directly will cause the value given to append to the end of the list, but desc can also
be replaced by passing it a list or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .

element [(<xml.etree.ElementTree.Element>)] etree style Element representing the node. Inherited
from AscXMLBase .

parent [(ColorCorrection)] The parent ColorCorrection instance that created this in-
stance.

sat [(Decimal)] The saturation value (to be applied with Rec 709 coefficients) is stored here. Satu-
ration is the last operation to be applied when applying a CDL.

sat can be set with a Decimal, float, int or numeric string.

xml [(str)] A nicely formatted XML string representing the node. Inherited from AscXMLBase.

xml_root [(str)] A nicely formatted XML, ready to write to file string representing the node. For-
matted as an XML root, it includes the xml version and encoding tags on the first line. Inherited
from AscXMLBase.

Public Methods:

build_element() Builds an ElementTree XML Element for this node and all nodes it contains.
element, xml, and xml_root attributes use this to build the XML. This function is identical
to calling the element attribute. Overrides inherited placeholder method from AscXMLBase
.

parse_xml_descs() Parses an ElementTree Element for any Description tags and appends any text
they contain to the desc. Inherited from AscDescBase

SopNode

Note: This class is meant only to be created by a ColorCorrection , and thus has the required arg of parent
when instantiating it.

40 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

Warning: Setting any of the sop node values with a single value as in offset = 5.4 will cause that value to
be copied over all 3 colors, resulting in [5.4, 5.4, 5.4].

class cdl_convert.correction.SopNode(parent)
Color node that contains slope, offset and power data.

Slope, offset and saturation are stored internally as lists, but always returned as tuples to prevent index assign-
ment from being successful. This protects the user from inadvertently setting a single value in the list to be a
non-valid value, which might result in values not being Decimals or even numbers at all.

Class Attributes:

element_names [[str]] Contains a list of XML Elements that refer to this class for use in parsing
XML files.

Attributes:

desc [[str]] Since all Asc nodes which can contain a single description, can actually contain an
infinite number of descriptions, the desc attribute is a list, allowing us to store every single
description found during parsing.

Setting desc directly will cause the value given to append to the end of the list, but desc can also
be replaced by passing it a list or tuple. Desc can be emptied by passing it None, [] or ().

Inherited from AscDescBase .

element [(<xml.etree.ElementTree.Element>)] etree style Element representing the node. Inherited
from AscXMLBase .

parent [(ColorCorrection)] The parent ColorCorrection instance that created this in-
stance.

slope [(Decimal, Decimal, Decimal)] An rgb tuple representing the slope, which changes the slope
of the input without shifting the black level established by the offset. These values must be
positive. If you set this attribute with a single value, it will be copied over all 3 colors. Any
single value given can be a Decimal, float, int or numeric string.

default: (Decimal(‘1.0’), Decimal(‘1.0’), Decimal(‘1.0’))

offset [(Decimal, Decimal, Decimal)] An rgb tuple representing the offset, which raises or lowers
the input brightness while holding the slope constant. If you set this attribute with a single value,
it will be copied over all 3 colors. Any single value given can be a Decimal, float, int or numeric
string.

default: (Decimal(‘0.0’), Decimal(‘0.0’), Decimal(‘0.0’))

power [(Decimal, Decimal, Decimal)] An rgb tuple representing the power, which is the only func-
tion that changes the response curve of the function. Note that this has the opposite response to
adjustments than a traditional gamma operator. These values must be positive. If you set this
attribute with a single value, it will be copied over all 3 colors. Any single value given can be a
Decimal, float, int or numeric string.

default: (Decimal(‘1.0’), Decimal(‘1.0’), Decimal(‘1.0’))

xml [(str)] A nicely formatted XML string representing the node. Inherited from AscXMLBase.

xml_root [(str)] A nicely formatted XML, ready to write to file string representing the node. For-
matted as an XML root, it includes the xml version and encoding tags on the first line. Inherited
from AscXMLBase.

Public Methods:

4.10. API Reference 41

cdl_convert Documentation, Release 0.9.1

build_element() Builds an ElementTree XML Element for this node and all nodes it contains.
element, xml, and xml_root attributes use this to build the XML. This function is identical
to calling the element attribute. Overrides inherited placeholder method from AscXMLBase
.

parse_xml_descs() Parses an ElementTree Element for any Description tags and appends any text
they contain to the desc. Inherited from AscDescBase

4.10.2 General Functions

Reset All

Resets all the class level lists and dictionaries of cdl_convert. Calling this is the same as calling each individual
reset_members method.

cdl_convert.reset_all()
Resets all class level member lists and dictionaries

Sanity Check

cdl_convert.utils.sanity_check(colcor)
Checks values on ColorCorrection for sanity.

Args:

colcor [(ColorCorrection)] The ColorCorrection to check for sane values.

Returns:

(bool) Returns True if all values are sane.

Raises: N/A

Will print a warning to stdout if any values exceed normal limits. Normal limits are defined as:

For Slope, Power and Saturation: Any value over 3 or under 0.1

For Offset: Any value over 1 or under -1

Note that depending on the desired look for a shot or sequence, it’s possible that a single ColorCorrection
element might have very odd looking values and still achieve a correct look.

To Decimal

This is the function we use to convert ints, floats and strings to Decimal objects. We do NOT attempt to use maximum
accuracy on floats passed in, as that results in extremely long values more often than not. Better to just truncate the
float with a string conversion, than attempt to perfectly represent with a Decimal.

cdl_convert.utils.to_decimal(value, name=’Value’)
Converts an incoming value to Decimal in the best way

Args:

value [(Decimal|str|float|int)] Any numeric value to be checked.

name=’Value’ [(str)] The type of value being checked: slope, offset, etc.

Returns:

(Decimal) If value passes all tests, returns value as Decimal.

42 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

Raises:

TypeError: If value given is not a number.

ValueError: If given a value that isn’t an allowed type.

4.10.3 Parse Functions

These functions can either return a ColorCorrection , or a ColorCollection , depending on if they are from
a container format.

Note: Use the parse_file function to parse any input file correctly, without worrying about matching the file
extension by hand.

Parse ale

cdl_convert.parse.parse_ale(input_file)
Parses an Avid Log Exchange (ALE) file for CDLs

Args:

input_file [(str)] The filepath to the ALE EDL

Returns:

(ColorCollection) A collection that contains all found ColorCorrections

Raises: N/A

An ALE file is traditionally gathered during a telecine transfer using standard ASCII characters. Each line
theoretically represents a single clip/take/shot.

Each field of data is tab delineated. We’ll be searching for the ASC_SOP, ASC_SAT fields, alone with the
standard Scan Filename fields.

The Data line indicates that all the following lines are comprised of shot information.

Parse cc

cdl_convert.parse.parse_cc(input_file)
Parses a .cc file for ASC CDL information

Args:

input_file [(str|<ElementTree.Element>)] The filepath to the CC or the ElementTree.Element ob-
ject.

Returns:

(ColorCorrection) The ColorCorrection described within.

Raises:

ValueError: Bad XML formatting can raise ValueError is missing required elements.

A CC file is really only a single element of a larger CDL or CCC XML file, but this element has become a
popular way of passing around single shot CDLs, rather than the much bulkier CDL file.

A sample CC XML file has text like:

4.10. API Reference 43

cdl_convert Documentation, Release 0.9.1

<ColorCorrection id="cc03340">
<SOPNode>

<Description>change +1 red, contrast boost</Description>
<Slope>1.2 1.3 1.4</Slope>
<Offset>0.3 0.0 0.0</Offset>
<Power>1.0 1.0 1.0</Power>

</SOPNode>
<SatNode>

<Saturation>1.2</Saturation>
</SatNode>

</ColorCorrection>

Additional elements can include multiple descriptions at every level, a description of the input colorspace, and
a description of the viewing colorspace and equipment.

Parse ccc

cdl_convert.parse.parse_ccc(input_file)
Parses a .ccc file into a ColorCollection with type ‘ccc’

Args:

input_file [(str)] The filepath to the CCC.

Returns:

(ColorCollection) A collection of all the found ColorCorrection as well as any metadata
within the XML

Raises:

ValueError: Bad XML formatting can raise ValueError is missing required elements.

A ColorCorrectionCollection is just that- a collection of ColorCorrection elements. It does not contain any
ColorDecision or MediaRef elements, but is free to contain as many Description elements as someone adds in.

It should also contain an InputDescription element, describing the color space and other properties of the incom-
ing image, as well as a ViewingDescription which describes the viewing environment as well as any relevant
hardware devices used to view or grade.

Parse cdl

cdl_convert.parse.parse_cdl(input_file)
Parses a .cdl file into a ColorCollection with type ‘cdl’

Args:

input_file [(str)] The filepath to the CDL.

Returns:

(ColorCollection) A collection of all the found ColorDecisions as well as any metadata within
the XML

Raises:

ValueError: Bad XML formatting can raise ValueError is missing required elements.

A ColorDecicionList is just that- a list of ColorDecision elements. It does not directly contain any ColorCorrec-
tions or Media Ref, only ColorDecisions, but is free to contain as many Description elements as someone adds
in.

44 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

It should also contain an InputDescription element, describing the color space and other properties of the incom-
ing image, as well as a ViewingDescription which describes the viewing environment as well as any relevant
hardware devices used to view or grade.

Parse cmx

cdl_convert.parse.parse_cmx(input_file)
Parses a CMX EDL file for ASC CDL information.

Args:

input_file [(str)] The filepath to the CMX EDL

Returns:

(ColorCollection) A collection that contains all the ColorCorrection objects found within this EDL

Raises: N/A

001 DS0010.bg1 V C 00:08:07:23 00:08:16:10 01:00:00:00 01:00:08:11 *ASC_SOP (1.45 1.22 1.15)(-0.14
-0.11 -0.11)(1.00 1.00 1.00) *ASC_SAT 0.773000

Parse file

Passes on the file to the correct parser.

cdl_convert.parse.parse_file(filepath, filetype=None)
Determines & uses the correct parser to use on a CDL file

Args:

filepath [(str)] The filepath to the file. Must exist.

filetype=None [(str)] A file extension corresponding to the CDL type to convert from. If not provided,
we’ll derive it from the filepath.

Should not include a ‘.’

Raises: N/A

Returns:

ColorCorrection or ColorCollection Depending on the type of input file, this function will
either return a single ColorCorrection or a full ColorCollection , containing one or more
ColorCorrection or ColorDecision

Parse flex

cdl_convert.parse.parse_flex(input_file)
Parses a DaVinci FLEx telecine EDL for ASC CDL information.

Args:

input_file [(str)] The filepath to the FLEx EDL

Returns:

(ColorCollection) A collection that contains all the ColorCorrection objects found within this EDL

Raises: N/A

4.10. API Reference 45

cdl_convert Documentation, Release 0.9.1

The DaVinci FLEx EDL is an odd duck, it’s information conveyed via an extremely strict line & character
addressing system.

Each line must begin with a line number header that indicated what type of information the line contains, with
line number 100 indicating the start of a new shot/take. Lines 000-099 contain session information.

Within each line, important information is constricted to a certain range of characters, rather than space or
comma separated like in an ALE EDL.

Some line numbers we care about, and the character indexes:

Line # Line Name Char Index Data Type
010 Project Title 10-79 Title
100 Slate Info 10-17 Scene

24-31 Take ID
42-49 Camera Reel ID

701 ASC SOP (This entry can be safely space separated)
702 ASC SAT (This entry can be safely space separated)

We’ll try and default to using the Slate information to derive the resultant filename, however that information is
optional. If no slate information is found, we’ll iterate up at the end of the title. If no title information is found,
we’ll have to iterate up on the actual input filename, which is far from ideal.

Parse Rhythm & Hues cdl

Rhythm & Hues’ implementation of the cdl format is based on a very early spec, and as such lacks the all metadata.
It’s extremely unlikely that you’ll run into this format in the wild.

cdl_convert.parse.parse_rnh_cdl(input_file)
Parses a space separated .cdl file for ASC CDL information.

Args:

input_file [(str)] The filepath to the CDL

Returns:

(ColorCorrection) The single ColorCorrection object retrieved from the beta CDL

Raises: N/A

A space separated cdl file is an internal Rhythm & Hues format used by the Rhythm & Hues for displaying shot
level and sequence level within their internally developed playback software.

The file is a simple file consisting of one line. That line has 10, space separated elements that correspond to the
ten ASC CDL elements in order of operations.

SlopeR SlopeG SlopeB OffsetR OffsetG OffsetB PowerR PowerG PowerB Sat

4.10.4 Write Functions

Each of these functions takes an ColorCorrection as an arg, then places as many attributes of the
ColorCorrection that the format supports into a properly formatted string or XML Tree, then writes that file.

Write cc

cdl_convert.write.write_cc(cdl)
Writes the ColorCorrection to a .cc file

46 Chapter 4. Table of Contents

cdl_convert Documentation, Release 0.9.1

Write ccc

cdl_convert.write.write_ccc(cdl)
Writes the ColorCollection to a .ccc file

Write cdl

cdl_convert.write.write_cdl(cdl)
Writes the ColorCollection to a .cdl file

Write Rhythm & Hues cdl

This writes a very sparse cdl format that is based on a very early spec of the cdl implementation. It lacks all metadata.
Unless you work at Rhythm & Hues, you probably don’t want to write a cdl that uses this format.

cdl_convert.write.write_rnh_cdl(cdl)
Writes the ColorCorrection to a space separated .cdl file

4.10. API Reference 47

cdl_convert Documentation, Release 0.9.1

48 Chapter 4. Table of Contents

CHAPTER 5

Indices and tables

• genindex

• search

49

cdl_convert Documentation, Release 0.9.1

50 Chapter 5. Indices and tables

Index

A
AscColorSpaceBase (class in cdl_convert.base), 29
AscDescBase (class in cdl_convert.base), 30
AscXMLBase (class in cdl_convert.base), 30

C
ColorCollection (class in cdl_convert.collection), 31
ColorCorrection (class in cdl_convert.correction), 33
ColorCorrectionRef (class in cdl_convert.decision), 34
ColorDecision (class in cdl_convert.decision), 35
ColorNodeBase (class in cdl_convert.base), 37

M
MediaRef (class in cdl_convert.decision), 38

P
parse_ale() (in module cdl_convert.parse), 43
parse_cc() (in module cdl_convert.parse), 43
parse_ccc() (in module cdl_convert.parse), 44
parse_cdl() (in module cdl_convert.parse), 44
parse_cmx() (in module cdl_convert.parse), 45
parse_file() (in module cdl_convert.parse), 45
parse_flex() (in module cdl_convert.parse), 45
parse_rnh_cdl() (in module cdl_convert.parse), 46
Python Enhancement Proposals

PEP 8, 24, 25, 27

R
reset_all() (in module cdl_convert), 42

S
sanity_check() (in module cdl_convert.utils), 42
SatNode (class in cdl_convert.correction), 40
SopNode (class in cdl_convert.correction), 41

T
to_decimal() (in module cdl_convert.utils), 42

W
write_cc() (in module cdl_convert.write), 46

write_ccc() (in module cdl_convert.write), 47
write_cdl() (in module cdl_convert.write), 47
write_rnh_cdl() (in module cdl_convert.write), 47

51

	Project Info
	Introduction
	Changelog
	Table of Contents
	Script Usage
	ColorCorrection Usage
	Color Collections
	Installation
	Changelog
	Support
	Frequently Asked Questions
	Contributing
	Licenses
	API Reference

	Indices and tables

